There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described.
View Article and Find Full Text PDFNanocomposites comprising hydrogels and plasmonic nanoparticles are attractive materials for tissue engineering, bioimaging, and biosensing. These materials are usually fabricated by adding colloidal nanoparticles to the uncured polymer mixture and thus require time-consuming presynthesis, purification, and ligand-exchange steps. Herein, we introduce approaches for rapid synthesis of gold nanostars (AuNSt) on hydrogel substrates, including those with complex three-dimensional (3D) features.
View Article and Find Full Text PDFDespite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS)-encoded nanoparticles are used for bioimaging, on account of their well-defined Raman spectra and biocompatibility, which allow long incubation times with high signal stability and no cytotoxicity. However, reliable analysis of SERS bioimaging requires quantification of the amount of encoded nanoparticles that have been taken up by cells and the effect of subsequent dilution due to cellular division (mitosis). Although methods such as elemental analysis and flow cytometry can be used to quantify nanoparticle uptake, these are both end-point measurements in which a cell population is screened rather than looking at individual cells.
View Article and Find Full Text PDFMonitoring dynamic processes in complex cellular environments requires the integration of uniformly distributed detectors within such three-dimensional (3D) networks, to an extent that the sensor could provide real-time information on nearby perturbations in a non-invasive manner. In this context, the development of 3D-printed structures that can function as both sensors and cell culture platforms emerges as a promising strategy, not only for mimicking a specific cell niche but also toward identifying its characteristic physicochemical conditions, such as concentration gradients. We present herein a 3D cancer model that incorporates a hydrogel-based scaffold containing gold nanorods.
View Article and Find Full Text PDFVisualization of intracellular pH (i-pH) using surface-enhanced Raman spectroscopy (SERS) plays an important role toward understanding of cellular processes including their interactions with nanoparticles. However, conventional two-dimensional SERS imaging often fails to take into consideration changes occurring in the whole-cell volume. We therefore aimed at obtaining a comprehensive i-pH profile of living cells by means of three-dimensional (3D) SERS imaging, thereby visualizing dynamic i-pH distribution changes in a single cell.
View Article and Find Full Text PDFMonitoring chemical reactions that occur in small spaces or confined environments is challenging. Surface-enhanced Raman scattering (SERS) spectroscopy offers the unique possibility to monitor spectral changes with high sensitivity and time resolution. Herein, we report the application of composite mesoporous TiO films loaded with Ag nanoparticles (NPs) to track chemical processes in real time.
View Article and Find Full Text PDFExperimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature.
View Article and Find Full Text PDFThe discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products.
View Article and Find Full Text PDFMetal colloids are of great interest in the field of nanophotonics, mainly due to their morphology-dependent optical properties, but also because they are high-quality building blocks for complex plasmonic architectures. Close-packed colloidal supercrystals not only serve for investigating the rich plasmonic resonances arising in strongly coupled arrangements but also enable tailoring the optical response, on both the nano- and the macroscale. Bridging these vastly different length scales at reasonable fabrication costs has remained fundamentally challenging, but is essential for applications in sensing, photovoltaics or optoelectronics, among other fields.
View Article and Find Full Text PDFSelf-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown.
View Article and Find Full Text PDFWe present the application of surface-enhanced Raman scattering (SERS) spectroscopy for the fast, sensitive and highly specific detection of the galectin-9 (Gal-9) protein in binding buffer (mimicking natural conditions). The method involves the use of specifically designed nanotags comprising glycan-decorated gold nanoparticles encoded with 4-mercaptobenzoic acid. At fast time scales Gal-9 can be detected down to a concentration of 1.
View Article and Find Full Text PDFThe design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging.
View Article and Find Full Text PDFThe optimization of the enhancement of Raman scattering by plasmonic effects is largely determined by the properties of the enhancing substrates. The main parameters behind this effect are related to the morphology of plasmonic nanoparticles and their relative distribution within the substrate. We focus this tutorial review on the effects of nanoparticle morphology, for the particular case of anisotropic metal nanoparticles.
View Article and Find Full Text PDFWe present herein a novel combination of gated mesoporous silica nanoparticles (MSNs) and surface-enhanced Raman scattering (SERS) for sensing applications. As a proof-of-concept, we show the design of a system comprising MSNs loaded with crystal violet (CV), a molecule with high Raman cross section acting as SERS reporter, and capped with either a suitable DNA sequence for the detection of Mycoplasma genomic DNA or with an aptamer that selectively coordinates cocaine. In both cases the presence of the corresponding target analyte in solution (i.
View Article and Find Full Text PDFUnderstanding protein amyloidogenesis is an important topic in protein science, fueled by the role of amyloid aggregates, especially oligomers, in the etiology of a number of devastating human degenerative diseases. However, the mechanisms that determine the formation of amyloid oligomers remain elusive due to the high complexity of the amyloidogenesis process. For instance, gold nanoparticles promote or inhibit amyloid fibrillation.
View Article and Find Full Text PDFMulticomponent nanoparticles are of particular interest due to a unique combination of properties at the nanoscale, which make them suitable for a wide variety of applications. Among them, Janus nanoparticles, presenting two distinct surface regions, can lead to specific interactions with interfaces, biomolecules, membranes etc. We report the synthesis of Janus nanoparticles comprising iron oxide nanospheres and gold nanostars, through two consecutive seed-mediated-growth steps.
View Article and Find Full Text PDFWe present a general route for the transfer of Au and Ag nanoparticles of different shapes and sizes, from water into various organic solvents. The experimental conditions for each type of nanoparticles were optimized by using a combination of thiolated poly(ethylene glycol) and a hydrophobic capping agent, such as dodecanethiol. The functionalized nanoparticles were readily transferred into organic dispersions with long-term stability (months).
View Article and Find Full Text PDFNanoparticles are widely used in various fields of science and technology as well as in everyday life. In particular, gold and silver nanoparticles display unique optical properties that render them extremely attractive for various applications. In this review, we focus on the use of noble metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single molecule detection.
View Article and Find Full Text PDFVibrational spectra of Xe-tagged cationic silicon oxide clusters Si(n)O(m)(+) with n = 3-5 and m = n, n ± 1 in the gas phase are obtained by resonant infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The Si(n)O(m)(+) clusters are produced in a laser vaporization ion source and Xe complexes are formed after thermalization to 100 K. The clusters are subsequently irradiated with tunable light from an IR free electron laser and changes in the mass distribution yield size-specific IR spectra.
View Article and Find Full Text PDFGold nanostars can display tunable optical properties in the visible and near IR, which lead to strong electromagnetic field enhancement at their tips. We report generalized application of gold nanostars for ultrasensitive identification of molecules, based on both localized surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS). We address the requirements of plasmonic sensors, related to sufficiently large areas where nanoparticles are uniformly immobilized with high density, as well as mechanical flexibility, which offers additional advantages for real-world applications.
View Article and Find Full Text PDFInfrared spectra of the isolated protonated flavin molecules lumichrome, lumiflavin, riboflavin (vitamin B2), and the biologically important cofactor flavin mononucleotide are measured in the fingerprint region (600-1850 cm(-1)) by means of IR multiple-photon dissociation (IRMPD) spectroscopy. Using density functional theory calculations, the geometries, relative energies, and linear IR absorption spectra of several low-energy isomers are calculated. Comparison of the calculated IR spectra with the measured IRMPD spectra reveals that the N10 substituent on the isoalloxazine ring influences the protonation site of the flavin.
View Article and Find Full Text PDFAu nanotriangles display interesting nanoplasmonic features with potential application in various fields. However, such applications have been hindered by the lack of efficient synthetic methods yielding sufficient size and shape monodispersity, as well as by insufficient morphological stability. We present here a synthesis and purification protocol that efficiently addresses these issues.
View Article and Find Full Text PDF