Molecules with immunological functions abound in hemochorial mammalian placentas where maternal blood and tissues are in direct contact with fetal placental cells. For the most part, investigators have focused on the possibility that these molecules are primarily in place for the purpose of preventing maternal immune mechanisms from attacking the genetically different fetal cells. Yet information collected in recent years indicates that these immunological mediators may serve other, non-immunological functions in placentas.
View Article and Find Full Text PDFHuman leucocyte antigen-G (HLA-G) is a natural immunosuppressant produced in human placentas that binds differently to the inhibitory leucocyte immunoglobulin-like receptors LILRB1 (ILT2) and LILRB2 (ILT4) according to its biochemical structure. To predict the binding functions of the HLA-G5 soluble isoform synthesized in placental villous cytotrophoblast (vCTB) cells, we investigated structural features of this protein. Biochemical and immunological studies showed that vCTB cell HLA-G5 heavy (H)-chain proteins are disulphide-bonded homodimers unassociated with beta(2)-microglobulin (beta2m) light-chain proteins.
View Article and Find Full Text PDFThe human major histocompatibility complex (MHC) contains genes encoding the Human Leukocyte Antigens (HLA). Of these antigens, placental immunologists need study only the HLA class I molecules, because HLA class II expression is repressed in the fetal placental cells that are in direct contact with maternal blood and tissues containing maternal immune cells. The class I antigens are subdivided into two general categories.
View Article and Find Full Text PDFExperimentation with most human cell types is restricted to the use of cell lines, and this limits our ability to extrapolate interpretations to the in vivo condition. However, in studying human trophoblast cells, we have a unique opportunity to obtain large quantities of readily available human tissue. In this chapter, we outline the methodology for purification of human trophoblast cells from term placentas.
View Article and Find Full Text PDFThe HLA-G message is alternatively spliced into multiple transcripts, two of which encode soluble isoforms. To initiate studies on the specific functions of the soluble isoforms, we produced soluble rHLA-G1 (rsG1) and rsG2 in human embryonic kidney 293 cells and characterized the proteins. Both isoforms were glycosylated and formed disulfide-bonded oligomers.
View Article and Find Full Text PDF