Chronic mucus hypersecretion (CMH) contributes to the morbidity and mortality of asthma, and remains uncontrolled by current therapies in the subset of patients with severe, steroid-resistant disease. Altered cross-talk between airway epithelium and airway smooth muscle cells (ASMCs), driven by pro-inflammatory cytokines such as interleukin (IL)-1β, provides a potential mechanism that influences CMH. This study investigated mechanisms underlying CMH by comparing IL-1β-induced gene expression profiles between asthma and control-derived ASMCs and the subsequent paracrine influence on airway epithelial mucus production IL-1β-treated ASMCs from asthmatic patients and healthy donors were profiled using microarray analysis and ELISA.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2015
Altered ECM protein deposition is a feature in asthmatic airways. Fibronectin (Fn), an ECM protein produced by human bronchial epithelial cells (HBECs), is increased in asthmatic airways. This study investigated the regulation of Fn production in asthmatic or nonasthmatic HBECs and whether Fn modulated HBEC proliferation and inflammatory mediator secretion.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination.
View Article and Find Full Text PDFFibulin-1 is an extracellular matrix (ECM) protein, levels of which are elevated in serum and lung tissue from patients with idiopathic pulmonary fibrosis compared to healthy volunteers. Inhibition of fibulin-1C, one of four fibulin-1 isoforms, reduced proliferation and wound healing in human airway smooth muscle (ASM) cells. This study identified the bioactive region/s of fibulin-1C which promotes fibrosis.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare and progressive cystic lung condition affecting approximately 3.4-7.5/million women, with an average lag time between symptom onset and diagnosis of upwards of 4 years.
View Article and Find Full Text PDFWe hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA.
View Article and Find Full Text PDFBackground: The underlying mechanisms of idiopathic pulmonary fibrosis (IPF) are unknown. This progressive disease has high mortality rates, and current models for prediction of mortality have limited value in identifying which patients will progress. We previously showed that the glycoprotein fibulin-1 is involved in enhanced proliferation and wound repair by mesenchymal cells and, thus, may contribute to lung fibrosis in IPF.
View Article and Find Full Text PDFBackground: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin.
View Article and Find Full Text PDFBackground: Virus-induced exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are a significant health burden and occur even in those receiving the best current therapies. Rhinovirus (RV) infections are responsible for half of all COPD exacerbations. The mechanism by which exacerbations occur remains undefined, however it is likely to be due to virus-induced inflammation.
View Article and Find Full Text PDFFibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD.
View Article and Find Full Text PDFTumstatin is an anti-angiogenic collagen IV α3 fragment, levels of which are reduced in the airways of asthmatics. Its reduction may be due to the degradation by extracellular matrix (ECM) proteases. Cathepsins play a role in ECM remodelling, with cathepsin D, H and K (CTSD, CTSH and CTSK) being associated with lung diseases.
View Article and Find Full Text PDFRhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelial cells (HBEC) for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability.
View Article and Find Full Text PDFThe lymphatic system is essential for the maintenance of tissue homeostasis and immunity. Its dysfunction in disease (such as lymphangioleiomyomatosis) can lead to chylous effusions, oedema or dissemination of malignant cells. Collagen IV has six α chains, of which some of the non-collagenous-1 domains have endogenous anti-angiogenic properties, however, little is known about specific endogenous anti-lymphangiogenic characteristics.
View Article and Find Full Text PDFAirway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has, thus, been considered as a target for bronchodilation. In asthma, however, there is a complex relationship between ASM and inflammatory cells, such as mast cells and T lymphocytes.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2012
Recent evidence suggests that the rare and progressive lung disease lymphangioleiomyomatosis (LAM) is metastatic in nature. Dysfunction of the tumor suppressor genes tuberous sclerosis complex (TSC), in particular mutational inactivation of TSC2, enhances both cell proliferation and migration. Although substantial progress has been made in understanding the role of TSC2 in abnormal LAM cell proliferation and its pharmacological targeting, the mechanisms underlying the enhanced migratory capacity in LAM are not well understood.
View Article and Find Full Text PDFEicosanoids are lipid-signaling mediators released by many cells in response to various stimuli. Increasing evidence suggests that eicosanoids such as leukotrienes and prostaglandins (PGs) may directly mediate remodeling. In this study, we assessed whether these substances could alter extracellular matrix (ECM) proteins and the inflammatory profiles of primary human airway smooth muscle cells (ASM) and fibroblasts.
View Article and Find Full Text PDFBackground. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β(2)-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study.
View Article and Find Full Text PDFBackground: While most of the clinical benefits of inhaled corticosteroid (ICS) therapy may occur at low doses, results of dose-ranging studies are inconsistent. Although symptom/lung function response to low and high dose ICS medication is comparable, it is uncertain whether low dose ICSs are as effective as high dose in the treatment of inflammation and remodeling.
Methods: 22 mild or moderate asthmatic adult subjects (corticosteroid free for > 2 months) participated in a randomized, parallel group study to compare effects of fluticasone propionate (FP) 200 mcg/day and 1000 mcg/day.
Rhinovirus-(RV-) induced asthma exacerbations account for high asthma-related health costs and morbidity in Australia. The cellular mechanism underlying this pathology is likely the result of RV-induced nuclear-factor-kappa-B-(NF-κB-) dependent inflammation. NF-κB may also be important in RV replication as inhibition of NF-κB inhibits replication of other viruses such as human immunodeficiency virus and cytomegalovirus.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2012
β(2)-Adrenergic receptor (β2AR) agonists induce airway relaxation via cAMP. Phosphodiesterase (PDE)s degrade and regulate cAMP, and in airway smooth muscle (ASM) cells PDE4D degrades cAMP. Long-acting β(2)-agonists are now contraindicated as monotherapy for asthma, and increased PDE4D has been speculated to contribute to this phenomenon.
View Article and Find Full Text PDFTransforming growth factor (TGF) β1 increases pro-inflammatory cytokines and contractile protein expression by human airway smooth muscle (ASM) cells, which could augment airway inflammation and hyperresponsiveness. Phosphoinositide 3' kinase (PI3K) is one of the signaling pathways implicated in TGFβ1 stimulation, and may be altered in asthmatic airways. This study compared the expression of PI3K isoforms by ASM cells from donors with asthma (A), chronic obstructive pulmonary disease (COPD), or neither disease (NA), and investigated the role of PI3K isoforms in the production of TGFβ1 induced pro-inflammatory cytokine and contractile proteins in ASM cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2012
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC).
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2012
Airway remodeling decreases lung function in chronic obstructive pulmonary disease (COPD). Extracellular matrix (ECM) deposition is increased in remodeled airways and drives cellular processes of proliferation, migration, and inflammation. We investigated the role of cigarette smoke in altering the ECM deposited from human lung fibroblasts.
View Article and Find Full Text PDF