Phys Chem Chem Phys
March 2024
With the increasing sophistication of each, theory and experiment have become highly specialized endeavors conducted by separate research groups. A result has been a weakening of the coupling between them and occasional hostility. Examples are given and suggestions are offered for strengthening the traditional synergy between theory and experiment.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2023
Chemists routinely explicate molecular structures and chemical reactions in terms of the propensities of semiclassical valence electrons (aka "Lewis dots"). Typically, the electrons are viewed as forming spin pairs and recent efforts to translate this concise and intuitive qualitative picture into an efficient and relatable quantitative model have made good progress. But electrons are not always paired and advanced quantum calculations have shown that this is so even in small diamagnetic species such as dicarbon and benzene.
View Article and Find Full Text PDFSemiclassical electrons (aka Lewis dots) have been a mainstay of chemists' thinking about molecular structure, polarizability, and reactivity for over a century. This utility has motivated the development of a corresponding quantitative description. Here we devise pairwise potentials that describe the behavior of valence electron pairs in hydrocarbons, including those in single, double, bridge, and bent bonds of linear, branched, and cyclic compounds, including anionic and cationic states.
View Article and Find Full Text PDFAs very light fermions, electrons are governed by antisymmetric wave functions that lead to exchange integrals in the evaluation of the energy. Here we use the localized representation of orbitals to decompose the electronic energy in a fashion that isolates the enigmatic exchange contributions and characterizes their distinctive control over electron distributions. The key to this completely general analysis is considering the electrons in groups of three, drawing attention to the curvatures of pair potentials, rather than just their amplitudes and slopes.
View Article and Find Full Text PDFFloating orbitals for valence electrons have made cameo appearances at several stages in the history of quantum chemistry. Most often, they were considered as potentially useful basis functions and, more recently, also as muses for the development of subatomistic force fields. To facilitate computation, these orbitals are generally taken to be real spherical Gaussians.
View Article and Find Full Text PDFDespite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the M intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP.
View Article and Find Full Text PDFFor a century now, "Lewis dots" have been a mainstay of chemical thinking, teaching and communication. However, chemists have assumed that this semi-classical picture of electrons needs to be abandoned for quantitative work, and the recourse in computational simulations has been to the extremes of first principles treatments of electrons on the one hand and force fields that avoid explicit electrons on the other hand. Given both the successes and limitations of these highly divergent approaches, it seems worth considering whether the Lewis dot picture might be made quantitative after all.
View Article and Find Full Text PDFIn DNP MAS NMR experiments at ∼80-110 K, the structurally important -CH and -NH signals in MAS spectra of biological samples disappear due to the interference of the molecular motions with the H decoupling. Here we investigate the effect of these dynamic processes on the NMR line shapes and signal intensities in several typical systems: (1) microcrystalline APG, (2) membrane protein bR, (3) amyloid fibrils PI3-SH3, (4) monomeric alanine-CD, and (5) the protonated and deuterated dipeptide N-Ac-VL over 78-300 K. In APG, the three-site hopping of the Ala-C peak disappears completely at 112 K, concomitant with the attenuation of CP signals from other C's and N's.
View Article and Find Full Text PDFJ Phys Chem B
April 2017
Although water's chemical properties are no less important than its exceptional physical properties, its acid-base behavior is relatively poorly understood. In fact, the Grotthus trajectories for ion recombination predicted by density functional theory do not comport well with the almost 100-fold slower diffusive trajectories observed in time-resolved spectroscopy. And, in the reverse reaction, the barrier to autoionization is not well characterized.
View Article and Find Full Text PDFSemi-classical electrons offer access to efficient and intuitive simulations of chemical reactions. As for any treatment of fermions, the greatest difficulty is in accounting for anti-symmetry effects. Semi-classical efforts to-date either reference Slater-determinants from ab initio treatments or adopt a heuristic approach inspired by density functional treatments.
View Article and Find Full Text PDFThe past decade has seen the first attempts at quantifying a semiclassical description of electrons in molecules. The challenge in this endeavor is to find potentials for electron interactions that adequately capture quantum effects. As has been the case for density functionals, the challenge is particularly great for the effects that follow from the requirement for wave function antisymmetry.
View Article and Find Full Text PDFThe surface charge of water, which is important in a wide range of chemical, biological, material, and environmental contexts, has been a subject of lengthy and heated debate. Recently, it has been shown that the highly efficient LEWIS force field, in which semiclassical, independently mobile valence electron pairs capture the amphiproticity, polarizability and H-bonding of water, provides an excellent description of the solvation and dynamics of hydroxide and hydronium in bulk water. Here we turn our attention to slabs, cylinders, and droplets.
View Article and Find Full Text PDFGeneralizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin.
View Article and Find Full Text PDFThe power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
February 2014
The buoyancy organelles of aquatic microorganisms have to meet stringent specifications: allowing gases to equilibrate freely across the proteinaceous shell, preventing the condensation of water vapor inside the hollow cavity and resisting collapse under hydrostatic pressures that vary with column depth. These properties are provided by the 7- to 8-kDa gas vesicle protein A (GvpA), repeats of which form all but small, specialized portions of the shell. Magic angle spinning nuclear magnetic resonance is uniquely capable of providing high-resolution information on the fold and assembly of GvpA.
View Article and Find Full Text PDFDuring the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = 1/2 species (13)C or (15)N.
View Article and Find Full Text PDFWe present a new, efficient strategy for designing fully balanced transmission line RF circuits for solid state NMR probes based on back propagation of common impedance nodes (BPCIN). In this approach, the impedance node phenomenon is the sole means of achieving mutual RF isolation and balance in all RF channels. BPCIN is illustrated using a custom double resonance 3.
View Article and Find Full Text PDFJ Infrared Millim Terahertz Waves
January 2013
In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band.
View Article and Find Full Text PDFResonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance.
View Article and Find Full Text PDFProton transfer to and from water is critical to the function of water in many settings. However, it has been challenging to model. Here, we present proof-of-principle for an efficient yet robust model based on Lewis-inspired submolecular particles with interactions that deviate from Coulombic at short distances to take quantum effects into account.
View Article and Find Full Text PDFEasy come, easy go: LEWIS, a new model of reactive and polarizable water that enables the simulation of a statistically reliable number of proton hopping events in aqueous acid and base at concentrations of practical interest, is used to evaluate proton transfer intermediates in aqueous acid and base (picture, left and right, respectively).
View Article and Find Full Text PDFOxygen-17 detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of signal intensities at 82 K, using the biradical TOTAPOL. The >6,000-fold savings in acquisition time enables (17)O-(1)H distance measurements and heteronuclear correlation experiments. These experiments are the initial demonstration of the feasibility of DNP NMR on quadrupolar (17)O.
View Article and Find Full Text PDFWe describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at (1)H/e(-) frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines.
View Article and Find Full Text PDFWe describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential.
View Article and Find Full Text PDF