Publications by authors named "Judith D Cohn"

Background: Histopathology images of tumor biopsies present unique challenges for applying machine learning to the diagnosis and treatment of cancer. The pathology slides are high resolution, often exceeding 1GB, have non-uniform dimensions, and often contain multiple tissue slices of varying sizes surrounded by large empty regions. The locations of abnormal or cancerous cells, which may constitute a small portion of any given tissue sample, are not annotated.

View Article and Find Full Text PDF

This paper explores the application of text mining to the problem of detecting protein functional sites in the biomedical literature, and specifically considers the task of identifying catalytic sites in that literature. We provide strong evidence for the need for text mining techniques that address residue-level protein function annotation through an analysis of two corpora in terms of their coverage of curated data sources. We also explore the viability of building a text-based classifier for identifying protein functional sites, identifying the low coverage of curated data sources and the potential ambiguity of information about protein functional sites as challenges that must be addressed.

View Article and Find Full Text PDF

Background: We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction.

View Article and Find Full Text PDF

Background: Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers.

View Article and Find Full Text PDF

We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important.

View Article and Find Full Text PDF

Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs.

View Article and Find Full Text PDF

Background: Evolutionary divergence in the position of the translational start site among orthologous genes can have significant functional impacts. Divergence can alter the translation rate, degradation rate, subcellular location, and function of the encoded proteins.

Results: Existing Genbank gene maps for Burkholderia genomes suggest that extensive divergence has occurred--53% of ortholog sets based on Genbank gene maps had inconsistent gene start sites.

View Article and Find Full Text PDF

Background: We present a fast version of the dynamics perturbation analysis (DPA) algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites.

View Article and Find Full Text PDF

A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density.

View Article and Find Full Text PDF

A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands over a wide range of resolutions (most are in the range 0.8-4.

View Article and Find Full Text PDF

Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin.

View Article and Find Full Text PDF