The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.
View Article and Find Full Text PDFThe Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI's mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases.
View Article and Find Full Text PDFMotivation: Gene Ontology Causal Activity Models (GO-CAMs) assemble individual associations of gene products with cellular components, molecular functions and biological processes into causally linked activity flow models. Pathway databases such as the Reactome Knowledgebase create detailed molecular process descriptions of reactions and assemble them, based on sharing of entities between individual reactions into pathway descriptions.
Results: To convert the rich content of Reactome into GO-CAMs, we have developed a software tool, Pathways2GO, to convert the entire set of normal human Reactome pathways into GO-CAMs.
The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection.
View Article and Find Full Text PDFThe emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection.
View Article and Find Full Text PDFGathering information from the scientific literature is essential for biomedical research, as much knowledge is conveyed through publications. However, the large and rapidly increasing publication rate makes it impractical for researchers to quickly identify all and only those documents related to their interest. As such, automated biomedical document classification attracts much interest.
View Article and Find Full Text PDFBackground: Understanding mechanisms underlying specific chemotherapeutic responses in subtypes of cancer may improve identification of treatment strategies most likely to benefit particular patients. For example, triple-negative breast cancer (TNBC) patients have variable response to the chemotherapeutic agent cisplatin. Understanding the basis of treatment response in cancer subtypes will lead to more informed decisions about selection of treatment strategies.
View Article and Find Full Text PDFPublished literature is an important source of knowledge supporting biomedical research. Given the large and increasing number of publications, automated document classification plays an important role in biomedical research. Effective biomedical document classifiers are especially needed for bio-databases, in which the information stems from many thousands of biomedical publications that curators must read in detail and annotate.
View Article and Find Full Text PDFGenomic data interpretation often requires analyses that move from a gene-by-gene focus to a focus on sets of genes that are associated with biological phenomena such as molecular processes, phenotypes, diseases, drug interactions or environmental conditions. Unique challenges exist in the curation of gene sets beyond the challenges in curation of individual genes. Here we highlight a literature curation workflow whereby gene sets are curated from peer-reviewed published data into GeneWeaver (GW), a data repository and analysis platform.
View Article and Find Full Text PDFThe Mouse Genome Database (MGD; http://www.informatics.jax.
View Article and Find Full Text PDFModel organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases.
View Article and Find Full Text PDFBackground: Cilia are specialized, hair-like structures that project from the cell bodies of eukaryotic cells. With increased understanding of the distribution and functions of various types of cilia, interest in these organelles is accelerating. To effectively use this great expansion in knowledge, this information must be made digitally accessible and available for large-scale analytical and computational investigation.
View Article and Find Full Text PDFBackground: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products.
Methods And Results: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology.
The Quest for Orthologs (QfO) is an open collaboration framework for experts in comparative phylogenomics and related research areas who have an interest in highly accurate orthology predictions and their applications. We here report highlights and discussion points from the QfO meeting 2015 held in Barcelona. Achievements in recent years have established a basis to support developments for improved orthology prediction and to explore new approaches.
View Article and Find Full Text PDFUnlabelled: The Gene Expression Database (GXD) is a comprehensive online database within the Mouse Genome Informatics resource, aiming to provide available information about endogenous gene expression during mouse development. The information stems primarily from many thousands of biomedical publications that database curators must go through and read. Given the very large number of biomedical papers published each year, automatic document classification plays an important role in biomedical research.
View Article and Find Full Text PDFIdentification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation.
View Article and Find Full Text PDFThe Mouse Genome Informatics (MGI), resource ( www.informatics.jax.
View Article and Find Full Text PDFThe Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes.
View Article and Find Full Text PDFDatabase (Oxford)
November 2017
The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis.
View Article and Find Full Text PDFBackground: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies.
View Article and Find Full Text PDF