Publications by authors named "Judith Besuglow"

Purpose: Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy.

Methods And Materials: Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.

View Article and Find Full Text PDF

Purpose: Helium ions offer intermediate physical and biological properties to the clinically used protons and carbon ions. This work presents the commissioning of the first clinical treatment planning system (TPS) for helium ion therapy with active beam delivery to prepare the first patients' treatment at the Heidelberg Ion-Beam Therapy Center (HIT).

Methods And Materials: Through collaboration between RaySearch Laboratories and HIT, absorbed and relative biological effectiveness (RBE)-weighted calculation methods were integrated for helium ion beam therapy with raster-scanned delivery in the TPS RayStation.

View Article and Find Full Text PDF

Background: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy.

Purpose: To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy.

View Article and Find Full Text PDF

We present the results of an investigation of the prompt-gamma emission from an interaction of a proton beam with phantom materials. Measurements were conducted with a novel setup allowing the precise selection of the investigated depth in the phantom, featuring three different materials composed of carbon, oxygen and hydrogen. We studied two beam energies of 70.

View Article and Find Full Text PDF