Publications by authors named "Judith Bellemare"

Background: Alpha-1 antitrypsin deficiency (AATD) is caused by genetic variants in the gene conferring risk of developing emphysema. The clinical expression of AATD-related emphysema mostly occurs in carriers of 2 deficient alleles. By DNA sequencing of , numerous rare variants have been identified.

View Article and Find Full Text PDF

Transcripts of the UGT1A gene, encoding half of human UDP-glucuronosyltransferase (UGT) enzymes, undergo alternative splicing, resulting in active enzymes named isoforms 1 (i1s) and novel truncated isoforms 2 (i2s). Here, we investigated the effects of depleting endogenous i2 on drug response and attempted to unveil any additional biologic role(s) for the truncated novel UGT proteins. We used an integrated systems biology approach that combines RNA interference with unbiased global genomic and proteomic screens, and used HT115 colorectal cancer cells as a model.

View Article and Find Full Text PDF

Uridine diphospho glucuronosyltransferase 2B17 (UGT2B17) glucuronidates androgens and xenobiotics including certain drugs. The UGT2B17 gene shows a remarkable copy number variation (CNV), which predisposes for solid tumors and influences drug response. Here, we identify a yet undescribed UGT2B17 mRNA overexpression in poor-risk chronic lymphocytic leukemia (CLL).

View Article and Find Full Text PDF

The oligomerization of UGTs [UDP (uridine diphosphate)-glucuronosyltransferases] modulates their enzyme activities. Recent findings also indicate that glucuronidation is negatively regulated by the formation of inactive oligomeric complexes between UGT1A enzymes [i1 (isoform 1)] and an enzymatically inactive alternatively spliced i2 (isoform 2). In the present paper, we assessed whether deletion of the UGT-interacting domains previously reported to be critical for enzyme function might be involved in i1-i2 interactions.

View Article and Find Full Text PDF

Background: The relationship between polymorphisms in the hydroxysteroid (17-beta) dehydrogenase (HSD17B) family of genes, which are involved in steroid hormone biotransformation, and the risk of prostate cancer (PCa) progression remains unexplored.

Objective: Determine whether inherited variations in HSD17B genes are associated with PCa progression.

Design, Setting, And Participants: We studied two independent Caucasian cohorts composed of 526 men with organ-confined PCa and 213 men with advanced disease who had a median follow-up of 7.

View Article and Find Full Text PDF

Context: The prognostic relevance of inherited variations in hormone-related genes in the context of prostate cancer (PCa) progression has not been well studied. Of these, UDP-glucuronosyltransferase (UGT) gene products lead to inactivation of steroids.

Objective: Our objective was to determine whether polymorphisms in five UGT genes, involved in steroid metabolism, are associated with the risk of biochemical recurrence after radical prostatectomy (RP) and to examine their relationship with hormonal exposure.

View Article and Find Full Text PDF

Background: The relationship between inherited germ-line variations in the 5α-reductase pathways of androgen biosynthesis and the risk of biochemical recurrence (BCR) after radical prostatectomy (RP) remains an unexplored area.

Objective: To determine the link between germ-line variations in the steroid-5α-reductase, α-polypeptide 1 (SRD5A1) and steroid-5α-reductase, α-polypeptide 2 (SRD5A2) genes and BCR.

Design, Settings, And Participants: We studied retrospectively two independent cohorts composed of 526 white (25% BCR) and 320 Asian men (36% BCR) with pathologically organ-confined prostate cancer who had a median follow-up of 88.

View Article and Find Full Text PDF

Glucuronidation by UDP-glucuronyltransferase (UGT) enzymes is the prevailing conjugative pathway for the metabolism of both xenobiotics and endogenous compounds. Alterations in this pathway, such as those generated by common genetic polymorphisms, have been shown to significantly impact on the health of individuals, influencing cancer susceptibility, responsiveness to drugs and drug-induced toxicity. Alternative usage of terminal exons leads to UGT1A-derived splice variants, namely the classical and enzymatically active isoforms 1 (i1) and the novel enzymatically inactive isoforms 2 (i2).

View Article and Find Full Text PDF

UDP-glucuronosyltransferases (UGTs) are major mediators in conjugative metabolism. Current data suggest that UGTs, which are anchored in the endoplasmic reticulum membrane, can oligomerize with each other and/or with other metabolic enzymes, a process that may influence their enzymatic activities. We demonstrated previously that the UGT1A locus encodes previously unknown isoforms (denoted "i2"), by alternative usage of the terminal exon 5.

View Article and Find Full Text PDF

Background And Aims: UGT2B4 is a member of the UDP-glucuronosyltransferase (UGT) superfamily, a major detoxifying system in humans. UGT2B4 is involved in bile acids metabolism and highly expressed in liver and extrahepatic tissues. The aim of this study was to uncover new molecular mechanisms underlying interindividual variability in the UGT2B4 pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a new type of protein called isoform i2 that affects how other proteins help break down substances in our bodies.
  • They found that when isoform i2 is present with another similar protein, it slows down the process of breaking down these substances without changing how well the proteins fit with their helpers.
  • This discovery shows that proteins can influence each other in ways that might help our bodies respond differently to different substances.
View Article and Find Full Text PDF

The human uridine diphospho (UDP)-glucuronosyltransferase (UGT) superfamily comprises enzymes responsible for a major biotransformation phase II pathway: the glucuronidation process. The UGT enzymes are located in the endoplasmic reticulum of almost all tissues, where they catalyze the inactivation of several endogenous and exogenous molecules, including bilirubin, sex steroids, numerous prescribed drugs, and environmental toxins. This metabolic pathway is particularly variable.

View Article and Find Full Text PDF

Background: The gene UGT1 encodes phase II detoxification proteins involved in the elimination of small hydrophobic substances of both endogenous and exogenous origin. To date, nine functional UGT1A proteins are known to be produced from a single gene composed of alternative first exons shared with four common exons. Recently, a novel exon (referred to as exon 5b) was identified in the common shared region.

View Article and Find Full Text PDF

Hypertrophic scarring is a pathological process characterized by fibroblastic hyperproliferation and by excessive deposition of extracellular matrix components. It has been hypothesized that abnormalities in epidermal-dermal crosstalk explain this pathology. To test this hypothesis, a tissue-engineered model of self-assembled reconstructed skin was used in this study to mimic interactions between dermal and epidermal cells in normal or pathological skin.

View Article and Find Full Text PDF