Publications by authors named "Judith B Grinspan"

Combined antiretroviral therapy (cART) has greatly decreased mortality and morbidity among persons with HIV; however, neurologic impairments remain prevalent, in particular HIV-associated neurocognitive disorders (HANDs). White matter damage persists in cART-treated persons with HIV and may contribute to neurocognitive dysfunction as the lipid-rich myelin membrane of oligodendrocytes is essential for efficient nerve conduction. Because of the importance of lipids to proper myelination, we examined the regulation of lipid synthesis in oligodendrocyte cultures exposed to the integrase strand transfer inhibitor elvitegravir (EVG), which is administered to persons with HIV as part of their initial regimen.

View Article and Find Full Text PDF

Oligodendrocytes (OLs), the myelin-generating cells of the central nervous system (CNS), are active players in shaping neuronal circuitry and function. It has become increasingly apparent that injury to cells within the OL lineage plays a central role in neurodegeneration. In this review, we focus primarily on three degenerative disorders in which white matter loss is well documented: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF
Article Synopsis
  • - The review highlights that behaviorally acquired HIV infection during adolescence coincides with critical brain development stages, yet its impact on the developing brain remains largely unexplored.
  • - Adolescents and young adults represent a significant portion of new HIV infections annually, and current research indicates they may experience neurocognitive impairments comparable to older adults.
  • - Ongoing studies are focusing on neuroimaging and pathology to better understand the effects of HIV on brain development in youth, emphasizing the need for further research to inform targeted treatments and strategies.
View Article and Find Full Text PDF

White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin.

View Article and Find Full Text PDF

The idea that myelination is driven by both intrinsic and extrinsic cues has gained much traction in recent years. Studies have demonstrated that myelination occurs in an intrinsic manner during early development and continues through adulthood in an activity-dependent manner called adaptive myelination. Motor learning, the gradual acquisition of a specific novel motor skill, promotes adaptive myelination in both the healthy and demyelinated central nervous system (CNS).

View Article and Find Full Text PDF

Background: A recurrent homozygous missense variant, c.160G>C;p.(Val54Leu) in HIKESHI, was found to cause a hypomyelinating leukodystrophy with high frequency in the Ashkenazi Jewish population.

View Article and Find Full Text PDF

Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs.

View Article and Find Full Text PDF

CLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16a mice, to investigate the loss of function of CLEC16A.

View Article and Find Full Text PDF

Regardless of adherence to combined antiretroviral therapy, white matter and myelin pathologies persist in patients with HIV-associated neurocognitive disorders, a spectrum of cognitive, motor, and behavioral impairments. We hypothesized that antiretroviral therapy alters the maturation of oligodendrocytes which synthesize myelin. We tested whether specific frontline integrase strand transfer inhibitors would alter oligodendrocyte differentiation and myelination.

View Article and Find Full Text PDF

During demyelinating disease such as multiple sclerosis and stroke, myelin is destroyed and along with it, the oligodendrocytes that synthesize the myelin. Thus, recovery is limited due to both interruptions in neuronal transmission as well as lack of support for neurons. Although oligodendrocyte progenitor cells remain abundant in the central nervous system, they rarely mature and form new functional myelin in the diseased CNS.

View Article and Find Full Text PDF

Background: Intrauterine growth restriction (IUGR) is a common complication of pregnancy and is associated with significant neurological deficits in infants, including white matter damage. Previous work using an animal model of IUGR has demonstrated that IUGR rats exhibit neurobehavioral deficits and developmental delays in oligodendrocyte maturation and myelination, but the mechanisms which cause this delay are unknown. Inflammation may be an important etiological factor in IUGR and has been recognized as playing a fundamental role in the pathogenesis of myelin disorders, including cerebral palsy.

View Article and Find Full Text PDF

Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology.

View Article and Find Full Text PDF

Objective: Neuroimmune cells, particularly microglia and astrocytes, play a critical role in neurodevelopment. Neurocognitive delays are common in children with congenital heart disease, but their etiology is poorly understood. Our objective was to determine whether prenatal hypoxemia, at levels common in congenital heart disease, induced neuroimmune activation to better understand the origins of neurobehavioral disorders in congenital heart disease.

View Article and Find Full Text PDF

While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions.

View Article and Find Full Text PDF

Objective: We tested the hypothesis that chronic fetal hypoxia, at a severity present in many types of congenital heart disease, would lead to abnormal neurodevelopment.

Methods: Eight mid-gestation fetal sheep were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid-filled environment for 22 ± 2 days under normoxic or hypoxic conditions. Total parenteral nutrition was provided.

View Article and Find Full Text PDF

Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression.

View Article and Find Full Text PDF

The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes.

View Article and Find Full Text PDF

Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59) and non-demyelinating (RSMHV2) viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination.

View Article and Find Full Text PDF

Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance.

View Article and Find Full Text PDF

Myelin, the lipid membrane that surrounds axons, is critical for the propagation of nervous impulses and axonal maintenance. The destruction of myelin or lack of myelin formation due to disease or injury causes severe motor and cognitive disability. Regeneration of myelin is theoretically possible but rarely happens.

View Article and Find Full Text PDF

Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury.

Design: Participants were randomly allocated to a control or experimental group (single independent variable).

View Article and Find Full Text PDF

Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood.

View Article and Find Full Text PDF

OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation.

View Article and Find Full Text PDF

The development of oligodendrocytes, the myelinating cells of the central nervous system, is temporally and spatially controlled by local signaling factors acting as inducers or inhibitors. Dorsal spinal cord tissue has been shown to contain inhibitors of oligodendrogliogenesis, although their identity is not completely known. We have studied the actions of one family of dorsal signaling molecules, the Wnts, on oligodendrocyte development.

View Article and Find Full Text PDF

Periventricular white matter injury (PWMI) is the leading cause of chronic neurologic injury among survivors of preterm birth. The hallmark of PWMI is hypomyelination and a lack of mature, myelinating oligodendrocytes. Oligodendrocytes undergo a well-characterized lineage progression from neural stem cell to mature oligodendrocyte.

View Article and Find Full Text PDF