The contact between nanoscale single-crystal silicon asperities and substrates terminated with -H and -OH functional groups is simulated using reactive molecular dynamics (MD). Consistent with previous MD simulations for self-mated surfaces with -H terminations only, adhesion is found to be low at full adsorbate coverages, be it self-mated coverages of mixtures of -H and -OH groups, or just -OH groups. As the coverage reduces, adhesion increases markedly, by factors of ∼5 and ∼6 for -H-terminated surfaces and -OH-terminated surfaces, respectively, and is due to the formation of covalent Si-Si bonds; for -OH-terminated surfaces, some interfacial Si-O-Si bonds are also formed.
View Article and Find Full Text PDFMolecular dynamics simulations were used to investigate the vapor-liquid equilibria (VLE) and interfacial properties of binary mixtures of N with either ethane, propane, -decane, or -dodecane. Alkanes and N were modeled by using the TraPPE-UA and Rivera force fields, respectively. The typically used Lorentz-Berthelot combining rules resulted in liquid phases that are too N-rich compared to experiment.
View Article and Find Full Text PDFNanoindentation and sliding experiments using single-crystal silicon atomic force microscope probes in contact with diamond substrates in vacuum were carried out in situ with a transmission electron microscope (TEM). After sliding, the experimentally measured works of adhesion were significantly larger than values estimated for pure van der Waals (vdW) interactions. Furthermore, the works of adhesion increased with both the normal stress and speed during the sliding, indicating that applied stress played a central role in the reactivity of the interface.
View Article and Find Full Text PDFBecause of the complexity of petroleum-based fuels, researchers typically use simplified mixtures, known as surrogates, to study combustion behavior and to attempt to identify how physical properties are related to combustion. The process of determining the surrogate composition to yield a desired set of thermophysical properties can be a complicated and time-consuming task. As a result, the use of computer simulations to narrow the number of possible surrogate compositions is beginning to be explored.
View Article and Find Full Text PDFIn this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging.
View Article and Find Full Text PDFThe work of adhesion is an interfacial materials property that is often extracted from atomic force microscope (AFM) measurements of the pull-off force for tips in contact with flat substrates. Such measurements rely on the use of continuum contact mechanics models, which ignore the atomic structure and contain other assumptions that can be challenging to justify from experiments alone. In this work, molecular dynamics is used to examine work of adhesion values obtained from simulations that mimic such AFM experiments and to examine variables that influence the calculated work of adhesion.
View Article and Find Full Text PDFA method for extending charge transfer to bond-order potentials, known as the bond-order potential/split-charge equilibration (BOP/SQE) method [P. T. Mikulski, M.
View Article and Find Full Text PDFA method is presented for extending any bond-order potential (BOP) to include charge transfer between atoms through a modification of the split-charge equilibration (SQE) formalism. Variable limits on the maximum allowed charge transfer between atomic pairs are defined by mapping bond order to an amount of shared charge in each bond. Charge transfer is interpreted as an asymmetry in how the shared charge is distributed between the atoms of the bond.
View Article and Find Full Text PDFThe theoretical examination of the friction between solids is discussed with a focus on self-assembled monolayers, carbon-containing materials and antiwear additives. Important findings are illustrated by describing examples where simulations have complemented experimental work by providing a deeper understanding of the molecular origins of friction. Most of the work discussed herein makes use of classical molecular dynamics (MD) simulations.
View Article and Find Full Text PDFAtomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations were conducted to examine single-asperity friction as a function of load, surface orientation, and sliding direction on individual crystalline grains of diamond in the wearless regime. Experimental and simulation conditions were designed to correspond as closely as state-of-the-art techniques allow. Both hydrogen-terminated diamond (111)(1 x 1)-H and the dimer row-reconstructed diamond (001)(2 x 1)-H surfaces were examined.
View Article and Find Full Text PDFThe stress and elasticity tensors for interatomic potentials that depend explicitly on bond bending and dihedral angles are derived by taking strain derivatives of the free energy. The resulting expressions can be used in Monte Carlo and molecular dynamics simulations in the canonical and microcanonical ensembles. These expressions are particularly useful at low temperatures where it is difficult to obtain results using the fluctuation formula of Parrinello and Rahman [J.
View Article and Find Full Text PDFThe elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C(11), C(12), and C(44), and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement.
View Article and Find Full Text PDFThe friction between an amorphous carbon tip and two n-alkane monolayers has been examined using classical molecular dynamics simulations. The two monolayers have the same packing density, but the chains comprising each monolayer differ in length by one -CH2- unit. The simulations show that the monolayers composed of C13 chains have higher friction than those composed of C14 chains when sliding in the direction of chain cant; the difference in friction becomes more pronounced as the load is increased.
View Article and Find Full Text PDFThe compressibility of filled and empty (10, 10) carbon nanotubes (CNTs) is examined using classical molecular dynamics simulations. The filled nanotubes contain C60, CH4, Ne, n-C4H10, and n-C4H7 molecules that are covalently cross-linked to the inner CNT walls. In addition, nanotubes filled with either a hydrogen-terminated carbon nanowire or a carbon nanotube of comparable diameter is also considered.
View Article and Find Full Text PDFClassical molecular dynamics simulations of an amorphous carbon tip sliding against monolayers of n-alkane chains are presented. The tribological behavior of tightly packed, pure monolayers composed of chains containing 14 carbon atoms is compared to mixed monolayers that randomly combine equal amounts of 12- and 16-carbon-atom chains. When sliding in the direction of chain cant under repulsive (positive) loads, pure monolayers consistently show lower friction than mixed monolayers.
View Article and Find Full Text PDFClassical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined.
View Article and Find Full Text PDFThe effect of filling nanotubes with C60, CH4, or Ne on the mechanical properties of the nanotubes is examined. The approach is classical molecular dynamics using the reactive empirical bond order (REBO) and the adaptive intermolecular REBO potentials. The simulations predict that the buckling force of filled nanotubes can be larger than that of empty nanotubes, and the magnitude of the increase depends on the density of the filling material.
View Article and Find Full Text PDF