Publications by authors named "Judith A Berliner"

Article Synopsis
  • Coronary artery disease (CAD) is a leading cause of death globally, and recent studies have identified 163 genetic loci linked to CAD, though the exact mechanisms remain unclear.
  • This research aimed to find genetic variants linked to key atherosclerosis-related traits in vascular smooth muscle cells (VSMCs), which are crucial in CAD development and can have both positive and negative effects.
  • The study found significant variations in VSMC traits such as calcification and proliferation and identified four key genetic loci associated with these traits, including one that suggests lower VSMC activity could reduce CAD risk.
View Article and Find Full Text PDF

Objective: The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model.

Approach And Results: Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks.

View Article and Find Full Text PDF

Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet.

View Article and Find Full Text PDF

Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs.

View Article and Find Full Text PDF

Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phospholcholine (OxPAPC) and its component phospholipids accumulate in atherosclerotic lesions and regulate the expression of >1,000 genes, many proatherogenic, in human aortic endothelial cells (HAECs). In contrast, there is evidence in the literature that HDL protects the vasculature from inflammatory insult. We have previously shown that in HAECs, HDL attenuates the expression of several proatherogenic genes regulated by OxPAPC and 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine.

View Article and Find Full Text PDF

The goal of these studies was to determine the effect of 5,6-epoxyisoprostane, EI, on human aortic endothelial cells (HAEC). EI can form as a phospholipase product of 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine, PEIPC, a proinflammatory molecule that accumulates in sites of inflammation where phospholipases are also increased. To determine the effect of EI on HAEC, we synthesized several stereoisomers of EI using a convergent approach from the individual optically pure building blocks, the epoxyaldehydes 5 and 6 and the bromoenones 14 and 16.

View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) have identified 35 loci that significantly associate with coronary artery disease (CAD) susceptibility. The majority of the genes represented in these loci have not previously been studied in the context of atherosclerosis. To characterize the roles of these candidate genes in the vessel wall, we determined their expression levels in endothelial, smooth muscle, and macrophage cells isolated from healthy, prelesioned, and lesioned mouse aortas.

View Article and Find Full Text PDF

Comprehensive identification of quantitative changes in protein phosphorylation using mass spectrometry is becoming a common tool in cell signaling studies. To date, most of these kinase network studies are conducted in stable cancer cell lines, yeasts, or other models that are not representative of cardiovascular disease. We describe methods based on phosphopeptide enrichment after tryptic digestion of cell lysates to study changes in protein phosphorylation of endothelial cells.

View Article and Find Full Text PDF

Excessive concentrations of oxidized phospholipids (OxPL), the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (PAPC) oxidation have been detected in atherosclerosis, septic inflammation, and acute lung injury (ALI) and have been shown to induce vascular barrier dysfunction. In contrast, oxidized PAPC (OxPAPC) at low concentrations exhibit potent barrier protective effects. The nature of such biphasic effects remains unclear.

View Article and Find Full Text PDF

There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms.

View Article and Find Full Text PDF

Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), referred to as OxPAPC, and an active component, 1-palmitoyl-2-(5,6-epoxyisoprostane E₂)-sn-glycero-3-phosphatidylcholine (PEIPC), accumulate in atherosclerotic lesions and regulate over 1,000 genes in human aortic endothelial cells (HAEC). We previously demonstrated that OxPNB, a biotinylated analog of OxPAPC, covalently binds to a number of proteins in HAEC. The goal of these studies was to gain insight into the binding mechanism and determine whether binding regulates activity.

View Article and Find Full Text PDF

Objective: Atherosclerosis is a chronic inflammatory disease initiated by monocyte recruitment and retention in the vessel wall. An important mediator of monocyte endothelial interaction is the chemokine interleukin (IL)-8. The oxidation products of phospholipids, including oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC), accumulate in atherosclerotic lesions and strongly induce IL-8 in human aortic endothelial cells (HAECs).

View Article and Find Full Text PDF

Introduction: Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.

View Article and Find Full Text PDF

The generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations.

View Article and Find Full Text PDF

Objective: Chronic infection has long been postulated as a stimulus for atherogenesis. Pseudomonas aeruginosa infection has been associated with increased atherosclerosis in rats, and these bacteria produce a quorum-sensing molecule 3-oxo-dodecynoyl-homoserine lactone (3OC12-HSL) that is critical for colonization and virulence. Paraoxonase 2 (PON2) hydrolyzes 3OC12-HSL and also protects against the effects of oxidized phospholipids thought to contribute to atherosclerosis.

View Article and Find Full Text PDF

Rationale: Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells.

Objective: To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC.

Methods And Results: We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules.

View Article and Find Full Text PDF

Previous studies have shown that oxidized products of the phospholipid PAPC (Ox-PAPC) are strong activators of aortic endothelial cells and play an important role in atherosclerosis and other inflammatory diseases. We and others have demonstrated that Ox-PAPC activates specific signaling pathways and regulates a large number of genes. Using a phosphoproteomic approach based on phosphopeptide enrichment and mass spectrometry analysis, we identified candidate changes in Ox-PAPC-induced protein phosphorylation of 228 proteins.

View Article and Find Full Text PDF

Gene by environment (GxE) interactions are clearly important in many human diseases, but they have proven to be difficult to study on a molecular level. We report genetic analysis of thousands of transcript abundance traits in human primary endothelial cell (EC) lines in response to proinflammatory oxidized phospholipids implicated in cardiovascular disease. Of the 59 most regulated transcripts, approximately one-third showed evidence of GxE interactions.

View Article and Find Full Text PDF

Objective: Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway.

View Article and Find Full Text PDF

Previous studies from our group have demonstrated that oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) activates over 1000 genes in human aortic endothelial cells (HAECs). Prominent among these are genes regulating inflammation, cholesterol homeostasis, antioxidant enzymes, and the unfolded protein response. Previous studies from our lab and others suggested that transcriptional regulation by Ox-PAPC may be controlled, at least in part, by reactive oxygen species.

View Article and Find Full Text PDF

There is increasing evidence that oxidized phospholipids (OxPLs) play an important role in atherosclerosis. These phospholipids accumulate in human and mouse lesions. Specific OxPLs have been identified as major regulators of many cell types present in the vessel wall.

View Article and Find Full Text PDF

Oxidized-1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) has been demonstrated to accumulate in atherosclerotic lesions and regulates expression of more than 1,000 genes in human aortic endothelial cell (HAEC). Among the most highly induced is heme oxygenase-1 (HO-1), a cell-protective antioxidant enzyme, which is sensitively induced by oxidative stress. To identify the pathway by which Ox-PAPC induces HO-1, we focused on the plasma membrane electron transport (PMET) complex, which contains ecto-NADH oxidase 1 (eNOX1) and NADPH:quinone oxidoreductase 1 (NQO1) and affects cellular redox status by regulating levels of NAD(P)H.

View Article and Find Full Text PDF

An improved synthesis of the naturally occurring hydroxy ketone 1-palmitoyl-2-(5,6)-epoxyisoprostane E 2- sn-glycero-3-phosphocholine (PEIPC) 1, a compound that plays a role in endothelial activation in atherosclerosis, has been carried out using a PMB ether as the key protecting group. Opening of an intermediate with pentylamine shows that the allylic epoxide is the position of attack by nucleophiles.

View Article and Find Full Text PDF

Oxidized phospholipids accumulate in atherosclerotic lesions, on lipoproteins, in other states of chronic inflammation, on apoptotic cells, necrotic cells and cells exposed to oxidative stress. These lipids regulate the transcription of over 1000 gene, regulating many endothelial functions, by activating several different cell surface receptors and multiple signaling pathways. These lipids also have important effects not involving transcription that regulate cell junctions and leukocyte binding.

View Article and Find Full Text PDF

Altered cellular production of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) is a ubiquitous feature of human disease. Vascular oxidative stress is a unifying area of research in atherosclerosis and aging. While elevated levels of ROS, especially oxygen radicals (O2-) and hydrogen peroxide (H2O2), induce cellular apoptosis, low levels play an important role in cell signaling [1,2].

View Article and Find Full Text PDF