displays a large diversity of horticultural groups with cantaloupe melon the most cultivated type. Using a combination of single-molecule sequencing, 10X Genomics link-reads, high-density optical and genetic maps, and chromosome conformation capture (Hi-C), we assembled a chromosome scale var. Charentais mono genome.
View Article and Find Full Text PDFIn cucurbits, CmWIP1 is a master gene controlling sex determination. To bring new insight in the function of CmWIP1, we investigated two Arabidopsis WIP transcription factors, AtWIP1/TT1 and AtWIP2/NTT. Using an inducible system we showed that WIPs are powerful inhibitor of growth and inducer of cell death.
View Article and Find Full Text PDFBackground: New psychoactive substance (NPS) use has become a widespread phenomenon among marginalised communities in Hungary. Since 2010, a growing number of reports in grey literature and anecdotal information among professionals have become available on NPS use among previously unaffected groups, such as people living in rural, socioeconomically deprived communities. In our research, we aimed to explore NPS use among these communities.
View Article and Find Full Text PDFTranslationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated.
View Article and Find Full Text PDFFloral scent is one of the most important characters in horticultural plants. Roses ( spp.) have been cultivated for their scent since antiquity.
View Article and Find Full Text PDFRoses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'.
View Article and Find Full Text PDFIn Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes.
View Article and Find Full Text PDFResults Probl Cell Differ
July 2019
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals.
View Article and Find Full Text PDFThe Arabidopsis thaliana F-box gene HAWAIIAN SKIRT (HWS) affects organ growth and the timing of floral organ abscission. The loss-of-function hws-1 mutant exhibits fused sepals and increased organ size. To understand the molecular mechanisms of HWS during plant development, we mutagenized hws-1 seeds with ethylmethylsulphonate (EMS) and screened for mutations suppressing hws-1 associated phenotypes.
View Article and Find Full Text PDFPurpose: Side effects consist of drug-specific and non-specific symptoms. Both components are based on bodily sensations that a person perceives after taking a drug and subsequently attributes to the drug. We suggest that somatosensory amplification (SSA) may explain a proportion of inter-individual differences in reports of side effects that cannot be accounted for by drug-specific safety profiles.
View Article and Find Full Text PDFIndividual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media.
View Article and Find Full Text PDFThe link between gene regulation/function and organ shape (morphogenesis) is poorly understood and remains one of the major issues in developmental biology. Petals are attractive model organs for studying organogenesis mainly because they have a simple laminar structure with a small number of cell types. Moreover, because petals are dispensable for plant growth and reproduction, one can experimentally manipulate petal development and dissect the genetic mechanisms behind the changes without serious effects on plant viability.
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) is a paramyxovirus that causes acute respiratory-tract infections in children and adults worldwide. A safe and effective vaccine could decrease the burden of disease associated with this novel pathogen. We engineered HMPV viral-like particles (HMPV-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two HMPV viruses of either lineage A or B.
View Article and Find Full Text PDFImmune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. Considerable progress in deciphering the mechanisms controlling the activation or deletion of T cells has been made by using T cell receptor (TCR) transgenic mice. One such model is the F5 model in which CD8 T cells express a TCR specific for an epitope derived from the influenza NP68 protein.
View Article and Find Full Text PDFNipah virus (NiV) and Hendra virus (HeV) are closely related, recently emerged paramyxoviruses that are capable of causing considerable morbidity and mortality in several mammalian species, including humans. Henipavirus-specific vaccines are still commercially unavailable, and development of novel antiviral strategies to prevent lethal infections due to henipaviruses is highly desirable. Here we describe the development of adeno-associated virus (AAV) vaccines expressing the NiV G protein.
View Article and Find Full Text PDFNipah virus (NiV) is a recently emerged zoonotic paramyxovirus whose natural reservoirs are several species of Pteropus fruit bats. NiV provokes a widespread vasculitis often associated with severe encephalitis, with up to 75% mortality in humans. We have analyzed the pathogenesis of NiV infection, using human leukocyte cultures and the hamster animal model, which closely reproduces human NiV infection.
View Article and Find Full Text PDFPlant organ growth and final size are determined by coordinated cell proliferation and expansion. The BIGPETALp (BPEp) basic helix-loop-helix (bHLH) transcription factor was shown to limit Arabidopsis thaliana petal growth by influencing cell expansion. We demonstrate here that BPEp interacts with AUXIN RESPONSE FACTOR8 (ARF8) to affect petal growth.
View Article and Find Full Text PDFIn Arabidopsis, four homeotic gene classes, A, B, C and E, are required for the patterning of floral organs. However, very little is known about how the activity of these master genes is translated into regulatory processes leading to specific growth patterns and the formation of organs with specific shapes and sizes. Previously we showed that the transcript variant BPEp encodes a bHLH transcription factor that is involved in limiting petal size by controlling post-mitotic cell expansion.
View Article and Find Full Text PDFBackground: With seasonal outbreaks affecting millions of people each year and devastating pandemics, human influenza is a major health concern. The pandemic threat includes highly pathogenic avian influenza viruses (HPAIVs) that gained the ability to infect humans in Asia and quickly spread throughout the world. Major concerns have been raised regarding today's vaccine production systems against influenza viruses, and new strategies to design efficient vaccines are under intensive investigation.
View Article and Find Full Text PDFVectors derived from retroviruses such as lentiviruses and onco-retroviruses are probably among the most suitable tools to achieve a long-term gene transfer since they allow stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses (MLV) since in contrast to the latter they can transduce non-proliferating target cells. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer approaches in vivo.
View Article and Find Full Text PDFExpression of tobacco mosaic virus (TMV) coat protein (CP) restricts virus disassembly and alters the accumulation of the movement protein (MP). To characterize the role of structure of transgenic CP in regulating virus disassembly and production of MP, we generated CPs with mutations at residues Glu50 and Asp77, located in the interface between juxtaposed CP subunits. In transgenic Nicotiana tabacum and BY-2 cells, three categories of coat protein-mediated resistance (CP-MR) levels were identified: wild-type CP-MR; elevated CP-MR; and no CP-MR.
View Article and Find Full Text PDFThere is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs.
View Article and Find Full Text PDFIn Arabidopsis, APETALA1, PISTILLATA, APETALA3 and SEPALLATA interact to form multimeric protein complexes required to specify petal identity. However, the downstream events that lead to petal specific shape and size remain largely unknown. Organ final size can be influenced by cell number or cell expansion or both.
View Article and Find Full Text PDFWe report here a targeting method that exploits the expression pattern of cell surface proteases to induce gene delivery to specific tissues. We describe retroviral vectors harboring modified surface glycoproteins derived from an avian influenza virus hemagglutinin (HA) for which the cell entry properties, dependent on HA cleavage by producer cells, were conditionally blocked at a postbinding step by insertion of matrix metalloproteinase (MMP) substrates. We demonstrate that such vectors induce gene transfer, both in vitro and in mice harboring human tumor xenografts, only through contact with target cells expressing MMPs that cleave the substrate introduced into the recombinant HA.
View Article and Find Full Text PDF