The design of scaffolds to reach similar three-dimensional structures mimicking the natural and fibrous environment of some cells is a challenge for tissue engineering, and 3D-printing and electrospinning highlights from other techniques in the production of scaffolds. The former is a well-known additive manufacturing technique devoted to the production of custom-made structures with mechanical properties similar to tissues and bones found in the human body, but lacks the resolution to produce small and interconnected structures. The latter is a well-studied technique to produce materials possessing a fibrillar structure, having the advantage of producing materials with tuned composition compared with a 3D-print.
View Article and Find Full Text PDFThe polyelectrolyte poly(sodium 4-styrenesulfonate) undergoes aromatic-aromatic interaction with the drug chlorpheniramine, which acts as an aromatic counterion. In this work, we show that an increase in the concentration in the dilute and semidilute regimes of a complex polyelectrolyte/drug 2:1 produces the increasing confinement of the drug in hydrophobic domains, with implications in single chain thermodynamic behavior. Diafiltration analysis at polymer concentrations between 0.
View Article and Find Full Text PDFIn this work, we design and produce micron-sized fiber mats by blending poly(-caprolactone) (PCL) with small amounts of block copolymers poly(ethylene oxide)poly(-caprolactone) (PEO--PCL) using electrospinning. Three different PEO--PCL block copolymers, with different molecular weights of PEO and PCL, were synthesized by ring opening polymerization of ε-caprolactone using PEO as initiator and stannous octoate as catalyst. The polymer blends were prepared by homogenous solvent mixing using dichloromethane for further electrospinning procedures.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2019
We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to -43 mV, respectively.
View Article and Find Full Text PDFWe demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2-3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO models of realistic density.
View Article and Find Full Text PDF