Type 1 diabetes (T1D) presents with two therapeutic challenges: the need to correct underlying autoimmunity and restore β-cell mass. We harnessed the unique capacity of regulatory T cells (Tregs) and the T cell receptor (TCR) to direct tolerance induction along with tissue-localized delivery of therapeutic agents to restore endogenous β-cell function. Specifically, we designed a combinatorial therapy involving biomaterials-based poly(lactic-co-glycolic acid) nanoparticles co-loaded with the Treg growth factor, IL-2, and the β-cell regenerative agent, harmine (a tyrosine-regulated kinase 1A [DYRK1A] inhibitor), conjugated to the surface of Tregs.
View Article and Find Full Text PDFCell Gene Ther Insights
January 2018
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs.
View Article and Find Full Text PDFUmbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.
View Article and Find Full Text PDF