Publications by authors named "Judit Chamorro-Servent"

Atrial fibrillation (AF) is the most common cardiac dysrhythmia and percutaneous catheter ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters has been used to identify ablation targets in persistent AF but is limited by poor contact and inadequate coverage of the left atrial cavity. In this paper, we investigate the accuracy with which atrial endocardial surface potentials can be reconstructed from electrograms recorded with non-contact catheters.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most prevalent cardiac dysrhythmia and percutaneous catheter ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters can identify ablation targets in persistent AF, but is limited by poor contact and inadequate coverage. To investigate the accuracy of inverse mapping of endocardial surface potentials from electrograms sampled with noncontact basket catheters.

View Article and Find Full Text PDF

Cardiac disease is a leading cause of morbidity and mortality in developed countries. Currently, non-invasive techniques that can identify patients at risk and provide accurate diagnosis and ablation guidance therapy are under development. One of these is electrocardiographic imaging (ECGI).

View Article and Find Full Text PDF

The electrocardiographic imaging (ECGI) inverse problem highly relies on adding constraints, a process called regularization, as the problem is ill-posed. When there are no prior information provided about the unknown epicardial potentials, the Tikhonov regularization method seems to be the most commonly used technique. In the Tikhonov approach the weight of the constraints is determined by the regularization parameter.

View Article and Find Full Text PDF

Background: Activation mapping using noninvasive electrocardiographic imaging (ECGi) has recently been used to describe the physiology of different cardiac abnormalities. These descriptions differ from prior invasive studies, and both methods have not been thoroughly confronted in a clinical setting.

Objective: The goal of the present study was to provide validation of noninvasive activation mapping in a clinical setting through direct confrontation with invasive epicardial contact measures.

View Article and Find Full Text PDF

Fluorescence diffuse optical tomography (fDOT) is a noninvasive imaging technique that makes it possible to quantify the spatial distribution of fluorescent tracers in small animals. fDOT image reconstruction is commonly performed by means of iterative methods such as the algebraic reconstruction technique (ART). The useful results yielded by more advanced l1-regularized techniques for signal recovery and image reconstruction, together with the recent publication of Split Bregman (SB) procedure, led us to propose a new approach to the fDOT inverse problem, namely, ART-SB.

View Article and Find Full Text PDF

Reconstruction algorithms for imaging fluorescence in near infrared ranges usually normalize fluorescence light with respect to excitation light. Using this approach, we investigated the influence of absorption and scattering heterogeneities on quantification accuracy when assuming a homogeneous model and explored possible reconstruction improvements by using a heterogeneous model. To do so, we created several computer-simulated phantoms: a homogeneous slab phantom (P1), slab phantoms including a region with a two- to six-fold increase in scattering (P2) and in absorption (P3), and an atlas-based mouse phantom that modeled different liver and lung scattering (P4).

View Article and Find Full Text PDF

Fluorescence diffuse optical tomography (fDOT) is an imaging modality that provides images of the fluorochrome distribution within the object of study. The image reconstruction problem is ill-posed and highly underdetermined and, therefore, regularisation techniques need to be used. In this paper we use a nonlinear anisotropic diffusion regularisation term that incorporates anatomical prior information.

View Article and Find Full Text PDF

When dealing with ill-posed problems such as fluorescence diffuse optical tomography (fDOT) the choice of the regularization parameter is extremely important for computing a reliable reconstruction. Several automatic methods for the selection of the regularization parameter have been introduced over the years and their performance depends on the particular inverse problem. Herein a U-curve-based algorithm for the selection of regularization parameter has been applied for the first time to fDOT.

View Article and Find Full Text PDF