Objective: To evaluate the effects of a gene transfer approach to IL-1β inhibition in an equine osteochondral chip fragment model of joint injury using a self-complementary adeno-associated virus with interleukin receptor antagonist transgene cassette (scAAVIL-1ra), as posttraumatic osteoarthritis in horses, similar to people, is a significant clinical problem.
Animals: 16 horses were utilized for the study.
Methods: All horses had an osteochondral chip fragment induced arthroscopically in one middle carpal joint while the contralateral joint was sham operated.
Mol Ther Methods Clin Dev
March 2024
Intra-articular adeno-associated virus (AAV) gene therapy has been explored as a potential strategy for joint diseases. However, concerns of low transduction efficacy, off-target expression, and neutralizing antibodies (Nabs) still need to be addressed. In this study, we demonstrated that AAV6 was the best serotype to transduce joints after screening serotypes 1 to 9.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMD) rat model of DMD.
View Article and Find Full Text PDFViral vector technologies are commonly used in neuroscience research to understand and manipulate neural circuits, but successful applications of these technologies in non-human primate models have been inconsistent. An essential component to improve these technologies is an impartial and accurate assessment of the effectiveness of different viral constructs in the primate brain. We tested a diverse array of viral vectors delivered to the brain and extraocular muscles of macaques and compared three methods for histological assessment of viral-mediated fluorescent transgene expression: epifluorescence (Epi), immunofluorescence (IF), and immunohistochemistry (IHC).
View Article and Find Full Text PDFBackground: Adeno-associated virus (AAV) vectors are stored and shipped frozen which poses logistic and economic barriers for global access to these therapeutics. To address this issue, we developed a method to stabilize AAV serotype 9 (AAV9) in a film matrix that can be stored at ambient temperature and administered by systemic injection.
Methods: AAV9 expressing the luciferase transgene was mixed with formulations, poured into molds and films dried under aseptic conditions.
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies.
View Article and Find Full Text PDFAAV virion biology is still lacking a complete understanding of the role that the various structural subunits (VP1, 2, and 3) play in virus assembly, infectivity, and therapeutic delivery for clinical indications. In this study, we focus on the less studied adeno-associated virus AAV3B and generate a collection of AAV plasmid substrates that assemble virion particles deficient specifically in VP1, VP2, or VP1 and 2 structural subunits. Using a collection of biological and structural assays, we observed that virions devoid of VP1, VP2, or VP1 and 2 efficiently assembled virion particles, indistinguishable by cryoelectron microscopy (cryo-EM) from that of wild type (WT), but unique in virion transduction (WT > VP2 > VP1 > VP1 and 2 mutants).
View Article and Find Full Text PDFAdeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) vectors have been widely used as favored delivery vehicles for the treatment of inherited diseases in clinical trials, including neurological diseases. However, the noninvasive systemic delivery of rAAV to the central nervous system is severely hampered by the blood-brain barrier (BBB). Several approaches have been exploited to enhance AAV vector brain transduction after systemic administration, including genetic modification of AAV capsids and physical methods.
View Article and Find Full Text PDFRecent advances in adeno-associated viral (AAV) capsid variants with novel oligotropism require validation in models of disease in order to be viable candidates for white matter disease gene therapy. We present here an assessment of the biodistribution, tropism, and efficacy of a novel AAV capsid variant (AAV/ Olig001) in a model of Canavan disease. We first define a combination of dose and route of administration of an AAV/Olig001-GFP reporter conducive to widespread CNS oligodendrocyte transduction in acutely symptomatic animals that model the Canavan brain at time of diagnosis.
View Article and Find Full Text PDFSensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV).
View Article and Find Full Text PDFGene therapy has the potential to maintain therapeutic blood clotting factor IX (FIX) levels in patients with hemophilia B by delivering a functional human F9 gene into liver cells. This phase 1/2, open-label dose-escalation study investigated BAX 335 (AskBio009, AAV8.sc-TTR-FIXR338Lopt), an adeno-associated virus serotype 8 (AAV8)-based FIX Padua gene therapy, in patients with hemophilia B.
View Article and Find Full Text PDFRecently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) vectors have become one of the most promising and efficacious delivery vehicles for human gene therapy; however, low infectivity remains a major ongoing obstacle in the clinical application of rAAV vectors. Multiple strategies, including rAAV capsid modification and the application of pharmacological reagents, have been explored to enhance rAAV vector gene delivery. Recently, a new strategy using native proteins or various peptides has shown promise for increasing rAAV transduction locally or globally.
View Article and Find Full Text PDFRecombinant adeno-associated viral (rAAV) vector mobilization is a largely theoretical process in which intact AAV vectors spread or "mobilize" from transduced cells and infect additional cells within, or external of, the initial host. This process can be helper virus-independent (vector alone) or helper virus-dependent ( rAAV production facilitated by superinfection of both wild-type AAV [wtAAV] and Adenovirus 5 [Ad] helper virus). Herein, rAAV production and mobilization with and without wtAAV were analyzed following plasmid transfection or viral transduction utilizing well-established conditions and analytical measurements.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2020
Adeno-associated virus (AAV) vectors have been successfully used in patients with bleeding disorders and blindness. For human liver targeting, two major factors restrict effective AAV transduction after systemic administration of AAV vectors: human hepatocyte tropism and neutralizing antibodies (Nabs). In this study, we attempted to isolate AAV variants with the ability to transduce human hepatocytes and escape Nabs using a directed evolution approach .
View Article and Find Full Text PDFMucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disease characterized by severe phenotypes, including corneal clouding. MPS I is caused by mutations in alpha-l-iduronidase (IDUA), a ubiquitous enzyme that catalyzes the hydrolysis of glycosaminoglycans. Currently, no treatment exists to address MPS I corneal clouding other than corneal transplantation, which is complicated by a high risk for rejection.
View Article and Find Full Text PDFCell-selective gene expression comprises a critical element of many adeno-associated virus (AAV) vector-based gene therapies, and to date achieving this goal has focused on AAV capsid engineering, cell-specific promoters, or cell-specific enhancers. Recently, we discovered that the capsid of AAV9 exerts a differential influence on constitutive promoters of sufficient magnitude to alter cell type gene expression in the rat CNS. For AAV9 vectors chicken β-actin (CBA) promoter-driven gene expression exhibited a dominant neuronal gene expression in the rat striatum.
View Article and Find Full Text PDF