Publications by authors named "Jude Mitchell"

Our understanding of how vision functions as primates actively navigate the real-world is remarkably sparse. As most data have been limited to chaired and typically head-restrained animals, the synergistic interactions of different motor actions/plans inherent to active sensing-e.g.

View Article and Find Full Text PDF

Our understanding of how vision functions as primates actively navigate the real-world is remarkably sparse. As most data have been limited to chaired and typically head-restrained animals, the synergistic interactions of different motor actions/plans inherent to active sensing - e.g.

View Article and Find Full Text PDF

The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9].

View Article and Find Full Text PDF

Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement.

View Article and Find Full Text PDF

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice.

View Article and Find Full Text PDF

The marmoset monkey provides an ideal model for examining laminar cortical circuits due to its smooth cortical surface, which facilitates recordings with linear arrays. The marmoset has recently grown in popularity due to its similar neural functional organization to other primates and its technical advantages for recording and imaging. However, neurophysiology in this model poses some unique challenges due to the small size and lack of gyri as anatomical landmarks.

View Article and Find Full Text PDF

Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects.

View Article and Find Full Text PDF

Primates have evolved sophisticated, visually guided reaching behaviors for interacting with dynamic objects, such as insects, during foraging. Reaching control in dynamic natural conditions requires active prediction of the target's future position to compensate for visuo-motor processing delays and to enhance online movement adjustments. Past reaching research in non-human primates mainly focused on seated subjects engaged in repeated ballistic arm movements to either stationary targets or targets that instantaneously change position during the movement.

View Article and Find Full Text PDF

Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters.

View Article and Find Full Text PDF

The visual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g.

View Article and Find Full Text PDF

Visual motion processing is a well-established model system for studying neural population codes in primates. The common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset.

View Article and Find Full Text PDF

Saccadic eye movements sample the visual world and ensure high acuity across the visual field. To compensate for delays in processing, saccades to moving targets require predictions: The eyes must intercept the target's future position to then pursue its direction of motion. Although prediction is crucial to voluntary pursuit, it is unclear whether it is an obligatory feature of saccade planning.

View Article and Find Full Text PDF

The common marmoset has attracted increasing interest as a model for visual neuroscience. A measurement of fundamental importance to ensure the validity of visual studies is spatial acuity. The marmoset has excellent acuity that has been reported at the fovea to be nearly half that of the human (Ordy and Samorajski []: Vision Res 8:1205-1225), a value that is consistent with them having similar photoreceptor densities combined with their smaller eye size (Troilo et al.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the transformations in the ventral visual pathway, especially in area V4, is crucial for object recognition.
  • V4 neurons are sensitive to local features like contours, and their curvature selectivity shows significant spatial variation along with distinct temporal response patterns.
  • Using computational models that incorporate these temporal responses can enhance decoding stimulus identity by providing a combined code for spatial and temporal features.
View Article and Find Full Text PDF

Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011).

View Article and Find Full Text PDF

A 5-y-old multiparous female common marmoset (Callithrix jacchus) presented with acute weight loss of approximately 25% over a 1-wk period. An abdominal mass was apparent on physical examination, and radiographs suggested peritoneal effusion. Exploratory laparotomy revealed hemoperitoneum and an enlarged, gray, hemorrhaging uterus; ovariohysterectomy was performed, and the marmoset recovered.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities.

View Article and Find Full Text PDF

One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse.

View Article and Find Full Text PDF

Conversational turn-taking is an integral part of language development, as it reflects a confluence of social factors that mitigate communication. Humans coordinate the timing of speech based on the behaviour of another speaker, a behaviour that is learned during infancy. While adults in several primate species engage in vocal turn-taking, the degree to which similar learning processes underlie its development in these non-human species or are unique to language is not clear.

View Article and Find Full Text PDF

Smooth pursuit eye movements stabilize slow-moving objects on the retina by matching eye velocity with target velocity. Two critical components are required to generate smooth pursuit: first, because it is a voluntary eye movement, the subject must select a target to pursue to engage the tracking system; and second, generating smooth pursuit requires a moving stimulus. We examined whether this behavior also exists in the common marmoset, a New World primate that is increasingly attracting attention as a genetic model for mental disease and systems neuroscience.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context.

View Article and Find Full Text PDF

Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al.

View Article and Find Full Text PDF

Attention improves the encoding of visual stimuli. One mechanism that is implicated in facilitating sensory encoding is the firing of action potentials in bursts. We tested the hypothesis that when spatial attention is directed to a stimulus, this causes an increase in burst firing to the attended stimulus.

View Article and Find Full Text PDF

Previous studies have shown that neurons in area V4 are involved in the processing of shapes of intermediate complexity and are sensitive to curvature. These studies also suggest that curvature-tuned neurons are position invariant. We sought to examine the mechanisms that endow V4 neurons with these properties.

View Article and Find Full Text PDF