Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2017
Rationale: The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN by mass spectrometry (MS) have not been fully investigated.
Methods: Atmospheric-pressure chemical-ionization mass spectrometry (APCI-MS) was used to detect ions characteristic of nitrated sugar alcohols. APCI time-of-flight mass spectrometry (APCI-TOF MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) were used for confirmation of each ion assignment.
Rapid Commun Mass Spectrom
January 2016
Rationale: Techniques for improving the detectability of chlorate and perchlorate salts with thermal desorption based ionizers (i.e. radioactive, corona discharge and photoionization-based) are desired.
View Article and Find Full Text PDFThe expected location of an air plasma produced by a focused YAG laser pulse has been found to be influenced by the acoustics of the surrounding environment. In open air, the expected location of a laser-induced air plasma is centered close to the focal point of the lens focusing the laser beam. When confining the same beam coaxially along the interior of a quartz tube, the expected location of the air plasma shifts away from the focal point, toward the focusing lens, in a region of less laser fluence.
View Article and Find Full Text PDFThis work presents a technique by which a low resolution ( approximately 1 nm) fiberoptic spectrometer may be used to definitively identify elements and molecular fragments in laser-induced breakdown spectroscopy. Commercial laser-induced breakdown spectroscopy (LIBS) spectrometers have high resolution in the area of spectral interest, and software is used to identify elements via a look-up table containing known spectral lines. When analyzing spectra from a lower resolution fiber-optic spectrometer, software based on look-up tables can produce erroneous results, reporting elements absent from the sample.
View Article and Find Full Text PDF