The recent use of organophosphate nerve agents in Syria, Malaysia, Russia, and the United Kingdom has reinforced the potential threat of their intentional release. These agents act through their ability to inhibit human acetylcholinesterase (hAChE; E.C.
View Article and Find Full Text PDFThe threat of a deliberate release of chemical nerve agents has underscored the need to continually improve field effective treatments for these types of poisonings. The oxime containing HLö-7 is a potential second-generation therapeutic reactivator. A synthetic process for HLö-7 is detailed with improvements to the DIBAL reduction and ion exchange steps.
View Article and Find Full Text PDFServing a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic.
View Article and Find Full Text PDFOver 50 years ago, the toxicity of irreversible organophosphate inhibitors targeting human acetylcholinesterase (hAChE) was observed to be stereospecific. The therapeutic reversal of hAChE inhibition by reactivators has also been shown to depend on the stereochemistry of the inhibitor. To gain clarity on the mechanism of stereospecific inhibition, the X-ray crystallographic structures of hAChE inhibited by a racemic mixture of VX (P ) and its enantiomers were obtained.
View Article and Find Full Text PDFThe wild-type OPAA enzyme has relatively high levels of catalytic activity against several organophosphate G-type nerve agents. A series of mutants containing replacement amino acids at the OPAA Y212, V342, and I215 sites showed several fold enhanced catalytic efficiency on sarin, soman, and GP. One mutant, Y212F/V342L, showed enhanced stereospecificity on sarin and that enzyme along with a phosphotriesterase mutant, GWT, which had the opposite stereospecificity, were used to generate enriched preparations of each sarin enantiomer.
View Article and Find Full Text PDFHuman acetylcholinesterase (AChE) is a significant target for therapeutic drugs. Here we present high resolution crystal structures of human AChE, alone and in complexes with drug ligands; donepezil, an Alzheimer's disease drug, binds differently to human AChE than it does to Torpedo AChE. These crystals of human AChE provide a more accurate platform for further drug development than previously available.
View Article and Find Full Text PDF