Publications by authors named "Jude A Okolie"

The current review examines the state of knowledge and research on machine learning (ML) applications in horticultural production and the potential for predicting fresh produce losses and waste. Recently, ML has been increasingly applied in horticulture for efficient and accurate operations. Given the health benefits of fresh produce and the need for food and nutrition security, efficient horticultural production and postharvest management are important.

View Article and Find Full Text PDF

Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased.

View Article and Find Full Text PDF

There is a lack of information about the detailed characterization of biomass of Nigerian origin. This study presents a comprehensive characterization of six biomass, groundnut shells, corncob, cashew leaves, (flame of the woods), sawdust, and lemongrass, to aid appropriate selection for bio-oil production. The proximate, ultimate, calorific value and compositional analyses were carried out following the American Standard for Testing and Materials (ASTM) standards.

View Article and Find Full Text PDF

The aviation sector, a significant greenhouse gas emitter, must lower its emissions to alleviate the climate change impact. Decarbonization can be achieved by converting low-carbon feedstock to sustainable aviation fuel (SAF). This study reviews SAF production pathways like hydroprocessed esters and fatty acids (HEFA), gasification and Fischer-Tropsch Process (GFT), Alcohol to Jet (ATJ), direct sugar to hydrocarbon (DSHC), and fast pyrolysis (FP).

View Article and Find Full Text PDF

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments.

View Article and Find Full Text PDF

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed.

View Article and Find Full Text PDF

Propylene glycol is a ubiquitous sustainable chemical that have several industrial applications. It can be used as a non-toxic antifreeze, moisturizers, and in cosmetics products. Commercial production of propylene glycol uses petroleum-based propylene oxide.

View Article and Find Full Text PDF

This paper outlines the sustainable management of the whiskey distillery by-products, known as draff and pot ale, through anaerobic digestion (AD). The substrates were pre-treated using 0.6M NaOH and high shear homogenizer for 24 h.

View Article and Find Full Text PDF

Torrefaction of biomass is a promising thermochemical pretreatment technique used to upgrade the properties of biomass to produce solid fuel with improved fuel properties. A comparative study of the effects of torrefaction temperatures (200, 250, and 300 °C) and residence times (0.5 and 1 h) on the quality of torrefied biomass samples derived from spent coffee grounds (SCG) and coffee husk (CH) were conducted.

View Article and Find Full Text PDF

Hydrothermal flames are formed in supercritical water in the presence of a fuel and an oxidant (usually air or oxygen). Integrating hydrothermal flames as the heat source for supercritical water oxidation helps to minimize the reaction time (to milliseconds), improve the reaction kinetics and reduce the chances of corrosion and reactor plugging. This review outlines state-of-the-art research on hydrothermal flames including the impacts of process parameters on flame ignition.

View Article and Find Full Text PDF

Forest fires significantly affect the wildlife, vegetation, composition and structure of the forests. This study explores the potential of partially burnt wood recovered in the aftermath of a recent Canadian forest fire incident as a feedstock for generating hydrogen-rich syngas through hydrothermal gasification. Partially burnt wood was gasified in hydrothermal conditions to study the influence of process temperature (300-500 °C), residence time (15-45 min), feed concentration (10-20 wt%) and biomass particle size (0.

View Article and Find Full Text PDF

This paper proposes a conceptual design for the catalytic supercritical water gasification of soybean straw. The design consists of four process units for pretreatment, gasification, separation, purification and combustion. The economic feasibility of hydrogen production was evaluated based on a comprehensive cash flow analysis.

View Article and Find Full Text PDF

Carbon dioxide (CO) is the largest anthropogenic greenhouse gas (GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes.

View Article and Find Full Text PDF