Publications by authors named "Judah A Denburg"

This issue highlights and details the program and scientific presentations at the International Eosinophil Society's 12th biennial symposium, which was held in Hamilton, Ontario, Canada, in July 2023. The meeting included sessions on regulation of eosinophil development; cell death, stress, and autophagy in eosinophils; local immunity interactions of eosinophils with multiple cell types; eosinophils in host defense; eosinophils and mast cells in gastrointestinal disorders; reciprocal interactions between eosinophils and the microbiome in homeostasis and dysbiosis; and eosinophils in tissue injury and repair and in tumor biology and cancer therapy. There was a mixture of special invited lectures and cutting-edge abstracts on specific aspects of eosinophil science, as well as enlivened pro-con debates on targeting eosinophils with biologics.

View Article and Find Full Text PDF

Objectives: The dosing interval of a primary vaccination series can significantly impact on vaccine immunogenicity and efficacy. The current study compared 3 dosing intervals for the primary vaccination series of the BNT162b2 mRNA COVID-19 vaccine, on humoral immune response and durability against SARS-CoV-2 ancestral and Beta variants up to 9 months post immunization.

Methods: Three groups of age- and sex-matched healthcare workers (HCW) who received 2 primary doses of BNT162b2 separated by 35-days, 35-42 days or >42-days were enrolled.

View Article and Find Full Text PDF

Background: Genome-wide association studies have identified associations of the single nucleotide polymorphism rs1837253 in the thymic stromal lymphopoietin (TSLP) gene with asthma, allergic disease and eosinophilia. The TSLP gene encodes two isoforms, long and short, and previous studies have indicated functional differences between these two isoforms.

Objective: We investigated the expression of these TSLP isoforms in response to a pro-inflammatory signal, and the role of the rs1837253 genotype in gene isoform regulation.

View Article and Find Full Text PDF

The large majority of classified primary immune deficiency (PID) diseases present in childhood. Yet, most patients with PID are adults, with a large proportion experiencing onset of symptoms beyond their childhood years. Most of these are diagnosed predominantly with antibody defects, but cellular and other disorders are increasingly being identified in older patients as well.

View Article and Find Full Text PDF

Purpose: Enhanced eosinophil/basophil (Eo/B) progenitor cell levels are known to be associated with allergic inflammation and atopy risk. The aim of the present study was to investigate the influence of different indoor exposures on the recruitment and differentiation of Eo/B progenitors in mother-child pairs.

Methods: In 68 mother-child pairs of the LINA study peripheral blood mononuclear cells were used to assess Eo/B colony forming units (CFUs).

View Article and Find Full Text PDF

The Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort study recruited 3624 pregnant women, most partners and 3542 eligible offspring. We hypothesise that early life physical and psychosocial environments, immunological, physiological, nutritional, hormonal and metabolic influences interact with genetics influencing allergic diseases, including asthma. Environmental and biological sampling, innate and adaptive immune responses, gene expression, DNA methylation, gut microbiome and nutrition studies complement repeated environmental and clinical assessments to age 5.

View Article and Find Full Text PDF

An important immunopathological hallmark of allergic disease is tissue eosinophilic and basophilic inflammation, a phenomenon which originates from hemopoietic progenitors (HP). The fate of HP is determined by local inflammatory cytokines that permit "in situ hemopoiesis," which leads to the accumulation of eosinophils and basophils (Eo/B). Given that recent evidence supports a critical immunomodulatory role for thymic stromal lymphopoietin (TSLP) in allergic inflammation, as well as TSLP effects on CD34+ progenitor cytokine and chemokine secretion, we investigated the role of TSLP in mediating eosinophilo- and basophilopoiesis, the mechanisms involved, and the association of these processes with atopic sensitisation.

View Article and Find Full Text PDF

Mast cell, basophil, and eosinophil lineages all derive from CD34(+) hemopoietic stem cells; however, mast cells are derived from a distinct, nonmyeloid progenitor, while eosinophils and basophils share a common myeloid progenitor. These progenitors likely evolved from an ancestral leukocyte population involved in innate immunity and currently play a central role in the pathology of allergic disease. Advances in isolation and analysis of mast cell and basophil/eosinophil progenitor populations have been critical to understanding lineage commitment, differentiation, function, and transcriptional regulation of these cells and have provided a way of monitoring the effect of novel investigational therapies on these cell populations in samples of blood, bone marrow, and airway secretions.

View Article and Find Full Text PDF

Intrauterine environmental exposures have been shown to influence neonatal immunity and subsequent allergic disease development. We have previously shown that fewer lipopolysaccharide (LPS)-stimulated eosinophil-basophil (Eo/B) colonies grow from cord blood (CB) of high-atopic risk infants, compared to low-atopic risk infants. In the present study, we investigated whether a surrogate ex vivo TH2 milieu (i.

View Article and Find Full Text PDF

Rationale: Cord blood eosinophil/basophil progenitor cells (Eo/B) of high risk infants have been shown to predict respiratory illnesses in infancy. Here we investigated this association in a population-based cohort. Furthermore, we analysed whether newborns Th1/Th2 balance and prenatal environmental exposure impact Eo/B recruitment.

View Article and Find Full Text PDF

Objective: Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis.

View Article and Find Full Text PDF

Eosinophils are multi-functional leucocytes that play a role in inflammatory processes including allergy and infection. Although bone marrow (BM) inflammatory cells are the main source of eosinophil-basophil (Eo/B) differentiation-inducing cytokines, a recent role has been demonstrated for cytokine induction through Toll-like receptor (TLR)-mediated signalling in BM progenitors. Having previously demonstrated that cord blood (CB) progenitors induce Eo/B colony-forming units (CFU) after lipopolysaccharide (LPS) stimulation, we sought to investigate the intracellular mechanisms by which LPS induces Eo/B differentiation.

View Article and Find Full Text PDF

Background: Hypereosinophilic syndromes (HESs) are chronic disorders that require long-term therapy to suppress eosinophilia and clinical manifestations. Corticosteroids are usually effective, yet many patients become corticosteroid refractory or develop corticosteroid toxicity. Mepolizumab, a humanized monoclonal anti-IL-5 antibody, showed corticosteroid-sparing effects in a double-blind, placebo-controlled study of FIP1L1/PDGFRA-negative, corticosteroid-responsive subjects with HESs.

View Article and Find Full Text PDF

Background: Little is known regarding the prenatal determinants of innate immune responses in relation to infant allergic risk. Environmental exposures, including microbial stimuli, might predispose susceptible subjects to atopy and asthma in early infancy or even in utero.

Objective: Because Toll-like receptors (TLRs) recognize microbial products and because cord blood (CB) progenitor alterations have been observed in neonates at risk for atopy, we investigated the expression and function of TLRs on CB hematopoietic progenitors in relation to atopic risk, as defined by maternal allergic sensitization.

View Article and Find Full Text PDF

Eosinophil/basophil (Eo/B) progenitor phenotype and function in cord blood (CB) are associated with atopic risk at birth and infant clinical outcomes. Molecular analyses of eosinophil-basophil differentiation events could identify clinically predictive biomarkers. To determine CB kinetic patterns of Eo/B lineage-associated gene expression (GATA-1, MBP1 and IL-5R alpha) after IL-5 stimulation, CB non-adherent mononuclear cells were isolated from random fresh and frozen samples and incubated in the presence of recombinant human interleukin-5.

View Article and Find Full Text PDF

Background: In steady state, hemopoietic progenitors constantly egress from the bone marrow (BM) into the blood and circulate through the peripheral tissues. In allergic diseases, the BM releases increased numbers of CD34(+) progenitor cells that migrate to the site of allergic inflammation, where they differentiate into tissue-dwelling and classic effector cells of allergy, such as mast cells, eosinophils, and basophils.

Objective: To examine whether peripheral blood CD34(+) cells in addition to being progenitors may also directly function as inflammatory effector cells.

View Article and Find Full Text PDF

Asthma, allergic rhinitis, nasal polyposis, chronic rhinosinusitis, and related forms of upper and lower airway diseases are often characterized by eosinophilic and basophilic inflammation, involving systemic processes. Eosinophil/basophil (Eo/B) lineage-committed progenitor cells in cord blood, peripheral blood, bone marrow, lung tissue, and sputum are up-regulated in the above conditions, and respond to allergen and other stimuli with increased differentiative and migratory capacity. A considerable body of evidence now exists showing that activation of such Eo/B-selective hemopoietic processes is not only associated with the onset and maintenance of allergic inflammation in atopic adults, but also with the development of the allergic diathesis.

View Article and Find Full Text PDF

Atopy is characterized by eosinophilic inflammation associated with recruitment of eosinophil/basophil (Eo/B) progenitors. We have previously shown that Eo/B progenitor phenotypes are altered in cord blood (CB) in infants at high risk of atopy/asthma, and respond to maternal dietary intervention during pregnancy. As respiratory tract viral infections have been shown to induce wheeze in infancy, we investigated the relationship between CB progenitor function and phenotype and acute respiratory illness (ARI), specifically wheeze and fever.

View Article and Find Full Text PDF

Unlabelled: IL-5 is the primary cytokine that stimulates the production and survival of eosinophils and basophils from progenitor cells. The inhaled glucocorticoid, budesonide, has been shown to exert a therapeutic effect via suppression of eosinophil/basophil progenitors in vivo. Since various steroids have exhibited the ability to enhance eosinophil/basophil progenitor differentiation, we examined the effects of budesonide in vitro.

View Article and Find Full Text PDF

The cysteinyl leukotrienes (cysLTs) are potent lipid mediators in allergic disease, acting through the receptors, cysLT1R and cysLTR2, and are produced by eosinophils derived from eosinophil/basophil (Eo/B) bone marrow (BM) progenitors. We have demonstrated the suppressive effects of either interleukin-5 (IL-5) deficiency or montelukast on eosinophil recruitment in murine allergic rhinitis, but neither of them fully abrogated the symptoms caused by residual inflammation and cytokine redundancy in eliciting BM Eo/B responses. We hypothesized that IL-5 deficiency and montelukast act synergistically to suppress tissue inflammatory and BM responses.

View Article and Find Full Text PDF

Objective: Neurologic and psychiatric manifestations are severe complications of systemic lupus erythematosus (SLE). As commonly seen in patients, spontaneous development of lupus-like disease in MRL-lpr mice is accompanied by brain atrophy and behavioral dysfunction. We examined inflammatory and ultrastructural aspects of central nervous system (CNS) involvement using a nonselective cyclooxygenase-2 (COX-2) inhibitor and measuring effects on behavior, microglial activation, and neuronal morphology.

View Article and Find Full Text PDF

Background: Eosinophil/basophil (Eo/B) progenitors fluctuate in the peripheral circulation during seasonal allergen exposure in atopic subjects. Several drugs have been shown to modulate Eo/B progenitor levels in the peripheral blood but, to date, the possible effect of antihistamines on Eo/B progenitors has not been explored. Our objective was to evaluate whether the antihistamine desloratadine (DL) can modulate peripheral blood Eo/B progenitors or other markers of allergic inflammation.

View Article and Find Full Text PDF

Brain atrophy, neurologic and psychiatric (NP) manifestations are common complications in the systemic autoimmune disease, lupus erythematosus (SLE). Here we show that the cerebrospinal fluid (CSF) from autoimmune MRL-lpr mice and a deceased NP-SLE patient reduce the viability of brain cells which proliferate in vitro. This detrimental effect was accompanied by periventricular neurodegeneration in the brains of autoimmune mice and profound in vivo neurotoxicity when their CSF was administered to the CNS of a rat.

View Article and Find Full Text PDF

Progenitor cells play important roles in the physiology and homeostasis of the overall hemopoietic system. The majority of hemopoietic activity takes place in the bone marrow, under the influence of resident marrow stromal cells, accessory cells, and/or their products. This constitutes the complex network of the hemopoietic inductive microenvironment, which is crucial for providing signals necessary for the maintenance of populations of progenitors at varying stages of lineage commitment.

View Article and Find Full Text PDF