Publications by authors named "Jubong Park"

We demonstrate a high-performance selection device by utilizing the concept of crested oxide barrier to suppress the sneak current in bipolar resistive memory arrays. Using a TaO(x)/TiO(2)/TaO(x) structure, high current density over 10(7) A cm(-2) and excellent nonlinear characteristics up to 10(4) were successfully demonstrated. On the basis of the defect chemistry and SIMS depth profile result, we found that some Ta atoms gradually diffused into TiO(2) film, and consequently, the energy band of the TiO(2) film was symmetrically bent at the top and bottom TaO(x)/TiO(2) interfaces and modified as a crested oxide barrier.

View Article and Find Full Text PDF

Yttria-stabilized zirconia (YSZ) layers of various thicknesses were designed and introduced before Pr0.7Ca0.3MnO3 (PCMO) film was deposited on W bottom electrodes with a submicron via-hole structure.

View Article and Find Full Text PDF

In this study, we propose a new and effective methodology for improving the resistive-switching performance of memory devices by high-pressure hydrogen annealing under ambient conditions. The reduction effect results in the uniform creation of oxygen vacancies that in turn enable forming-free operation and afford uniform switching characteristics. In addition, H(+) and mobile hydroxyl (OH(-)) ions are generated, and these induce fast switching operation due to the higher mobility compared to oxygen ions.

View Article and Find Full Text PDF

The combination of a threshold switching device and a resistive switching (RS) device was proposed to suppress the undesired sneak current for the integration of bipolar RS cells in a cross-point array type memory. A simulation for this hybrid-type device shows that the matching of key parameters between switch element and memory element is an important issue. Based on the threshold switching oxides, a conceptual structure with a simple metal-oxide 1-oxide 2-metal stack was provided to accommodate the evolution trend.

View Article and Find Full Text PDF

We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices.

View Article and Find Full Text PDF

This paper describes the resistive switching of a cross-point cell array device, with a junction area of 100 nm x 100 nm, fabricated using ultraviolet nanoimprinting. A GdO(x) and Cu-doped MoO(x) stack with platinum top and bottom electrodes served as the resistive switching layer, which shows analog memory characteristics with a resistance ratio greater than 10. To demonstrate a neural network circuit, we operated the cell array device as an electrically modifiable synapse array circuit and carried out a weighted sum operation.

View Article and Find Full Text PDF