Publications by authors named "Juao-Guilherme Rosa"

Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1).

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, dominantly inherited neurodegenerative disease caused by the expanded polyQ tract in the protein ATAXIN1 (ATXN1) and characterized by progressive motor and cognitive impairments. There are no disease-modifying treatments or cures for SCA1. Brain-derived neurotrophic factor (BDNF) plays important role in cerebellar physiology and has shown therapeutic potential for cerebellar pathology in the transgenic mouse model of SCA1, ATXN1[82Q] line that overexpress mutant ATXN1 under a cerebellar Purkinje-cell-specific promoter.

View Article and Find Full Text PDF

While astrocyte heterogeneity is an important feature of the healthy brain, less is understood about spatiotemporal heterogeneity of astrocytes in brain disease. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a CAG repeat expansion in the gene (). We characterized astrocytes across disease progression in the four clinically relevant brain regions, cerebellum, brainstem, hippocampus, and motor cortex, of mice, a knock-in mouse model of SCA1.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine-encoding CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by progressive motor deficits, cognitive decline, and mood changes including anxiety and depression, with longer number of repeats correlating with worse disease outcomes. While mouse models have been very useful in understanding etiology of ataxia and cognitive decline, our understanding of mood symptoms in SCA1 has lagged.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin1 (ATXN1) gene. SCA1 is characterized by motor deficits, cerebellar neurodegeneration, and gliosis and gene expression changes. Expression of brain-derived neurotrophic factor (BDNF), growth factor important for the survival and function of cerebellar neurons, is decreased in ATXN1[82Q] mice, the Purkinje neuron specific transgenic mouse model of SCA1.

View Article and Find Full Text PDF

Over the past decade, research has unveiled the intimate relationship between neuroinflammation and neurodegeneration. Microglia and astrocytes react to brain insult by setting up a multimodal inflammatory state and act as the primary defenders and executioners of neuroinflammatory structural and functional changes. Microglia and astrocytes also play critical roles in the maintenance of normal brain function.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients.

View Article and Find Full Text PDF

Microglia, the resident macrophages of the central nervous system, critically influence neural function during development and in adulthood. Microglia are also profoundly sensitive to insults to the brain to which they respond with process of activation that includes spectrum of changes in morphology, function, and gene expression. Ataxias are a class of neurodegenerative diseases characterized by motor discoordination and predominant cerebellar involvement.

View Article and Find Full Text PDF