Publications by authors named "Juanru Cheng"

As a gene with antiaging functions, sirtuin6 () belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia.

View Article and Find Full Text PDF

Myogenesis is an essential process that can affect the yield and quality of beef. Transcriptional studies have shown that histone deacetylase 11 (HDAC11) was differentially expressed in muscle tissues of 6 and 18 month old Longlin cattle, but its role in the regulation of myogenesis remains unclear. This study aimed to determine the role of HDAC11 in the proliferation and differentiation of bovine muscle stem cells (MuSCs).

View Article and Find Full Text PDF

The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics.

View Article and Find Full Text PDF

Background: The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases.

View Article and Find Full Text PDF

Glycolysis in follicular granulosa cells (GCs) is the primary source of energy metabolism substrate of oocytes and is closely related to follicular development in mammals. Many physiological functions of GCs are regulated by follicle-stimulating hormone (FSH). In contrast, whether FSH regulates the glycolysis of GCs and its mechanism remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * The study compared healthy follicles (HFs) and atretic follicles (AFs) in Bama Xiang pigs, analyzing hormonal concentrations and gene expressions between the two groups.
  • * Results indicated that AFs had lower estradiol but higher progesterone levels compared to HFs, with distinct differences in gene expression and identified 18 differential metabolites linked to metabolic pathways; disorders in amino acid and bile acid metabolism may play a role in follicular atresia.
View Article and Find Full Text PDF

Granulosa cells (GCs) are the main supporting cells in follicles and play an important role in the regulation of oocyte maturation and follicular atresia. Accumulating evidence indicates that non-coding RNAs participate in regulation of the physiological function of GCs. However, whole-transcriptome analysis for GCs of buffalo has yet to be reported.

View Article and Find Full Text PDF

Follicular atresia is a complex physiological process, which results in the waste of follicles and oocytes from the ovary. Elucidating the physiological mechanism of follicular atresia will hopefully reverse the fate of follicles, thereby improve the reproductive efficiency of female animals. However, there are still many gaps to be filled during the follicular atresia process.

View Article and Find Full Text PDF