Publications by authors named "Juanmin Li"

Unconventional fluorescent polymers are attracting increasing attention because of their excellent biocompatibility and wide applications. However, these polymers typically exhibit weak long-wavelength emission. Herein, three novel aliphatic linear polyphosphate esters are prepared via a one-pot polycondensation reaction.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits.

View Article and Find Full Text PDF

Background: Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated.

View Article and Find Full Text PDF

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.

View Article and Find Full Text PDF

While an in-depth understanding of the biological behavior of engineered nanoparticles (NPs) is of great importance for their various applications, it remains challenging to quantitatively characterize NP-protein interactions in a simple and high-throughput manner. In the present work, we propose a new, colorimetric approach capable of quantitatively analyzing the adsorption of proteins onto the surface of NPs by their distinct peroxidase-mimic properties. Taking cationic AuNPs as an example, we demonstrate that this colorimetric method is capable of evaluating NP-protein interactions in a simple and high-throughput manner in multiwell plates.

View Article and Find Full Text PDF

Background: Accumulating research suggests that hematopoiesis and bone metabolism are interconnected. Several studies have investigated the partial indexes of peripheral blood counts related to bone mineral density (BMD). The aim of this study was to investigate the associations between all of the parameters, especially the risk interval of complete blood counts (CBC) and BMD in a sample of elderly subjects aged >70 years.

View Article and Find Full Text PDF

Jingui Shenqi Pills (JGSQP) have been a staple of traditional Chinese medicine for thousands of years, used primarily as a treatment for kidney yang deficiency (KYD). analyses of JGSQP revealed strong induction of osteogenic differentiation and inhibition of adipogenic differentiation in bone-marrow-derived mesenchymal stem/stromal cells. However, the mechanisms by which JGSQP regulate the bone-fat balance in murine ovariectomy-induced osteoporosis with KYD have not been reported.

View Article and Find Full Text PDF

A fundamental understanding of nanoparticle-protein corona and its interactions with biological systems is essential for future application of engineered nanomaterials. In this work, fluorescence resonance energy transfer (FRET) is employed for studying the protein adsorption behavior of nanoparticles. The adsorption of human serum albumin (HSA) onto the surface of InP@ZnS quantum dots (QDs) with different chirality (d- and l-penicillamine) shows strong discernible differences in the binding behaviors including affinity and adsorption orientation that are obtained upon quantitative analysis of FRET data.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, a novel ratiometric fluorescence assay for ATP was developed based on the excimer-monomer transfer of a perylene probe. By encapsulating a perylene probe, N,N'-bis(6-caproic acid)-3,4:9,10-perylenediimide (PDI), into zeolitic imidazolate framework-8 (ZIF-8) nanocrystals, fluorescent nanocomposites (PDI@ZIF-8) with significant excimer emission of the perylene probe were prepared for the first time.

View Article and Find Full Text PDF

We aimed to assess the accuracy of self-assessment for acute stroke patients via mobile phone application-based scales and determine the value and prospect of clinical use.A cross-sectional study was designed and acute stroke patients were enrolled. We pushed the modified Rankin scale (mRS) and activities of daily living (ADL) scale to patients via mobile phone application for self-assessment on the day before they were out of hospital.

View Article and Find Full Text PDF

Silver nanoparticles (Ag NPs) enhanced perylene probe excimer emission is reported for the first time. It was observed that strong interactions between the perylene probe and the Ag NPs induced co-aggregation. As a result, a new in situ generated plasmonic absportion band of the Ag NPs at longer wavelength emerged.

View Article and Find Full Text PDF
Article Synopsis
  • A new water-soluble coronene bisimide derivative (CTDI) was synthesized and can self-assemble into nanofibers in water.
  • These nanofibers display significant peroxidase-like catalytic activity, allowing them to facilitate the redox reaction of a specific substrate (TMB) in the presence of hydrogen peroxide, leading to visible color changes.
  • The developed assay is highly sensitive for detecting glucose, capable of identifying concentrations as low as 1 μM, and has been successfully tested on diluted human blood samples alongside a commercial glucose meter.
View Article and Find Full Text PDF

A black-hole quencher (BHQ-2) labeled DNA (Q-DNA) with a phosphorothioate backbone was covalently conjugated to the CdTe QDs during the QDs synthesis procedure. The hairpin structure of Q-DNA shortened the distance of the CdTe QDs and the BHQ-2 group, which resulted in fluorescence quenching of the QDs. The addition of target DNA or deoxyribonuclease I (DNase I) could move the BHQ-2 group away from the QDs.

View Article and Find Full Text PDF

A novel fluorescence turn-on strategy based on Au nanoparticles and a perylene probe for the sensing of Hg(2+) ions has been developed. It was observed that a perylene probe could be adsorbed onto the surface of Au NPs through strong electrostatic and hydrophobic interactions. Its fluorescence was efficiently quenched by the Au nanoparticles.

View Article and Find Full Text PDF

A novel fluorescence turn-on microRNA (miRNA) detection method based on duplex-specific nuclease (DSN) and a perylene probe is presented in this study. A positively charged perylene derivative (compound 1) was used as the fluorescent probe. Compound 1 exhibits strong monomer fluorescence in an aqueous buffer solution.

View Article and Find Full Text PDF

A benzoperylene probe excimer emission in an aqueous buffer solution is observed for the first time, and a novel ratiometric fluorescence method based on the probe excimer emission for the sensitive detection of heparin and heparinase is demonstrated. A negatively charged benzoperylene derivative, 6-(benzo[ghi]perylene-1,2-dicarboxylic imide-yl)hexanoic acid (BPDI), was employed. A polycation, poly(diallyldimethylammonium) chloride (poly-DDA), could induce aggregation of BPDI through noncovalent interactions.

View Article and Find Full Text PDF

A novel fluorescence turn-on strategy for glucose sensing is demonstrated. The fluorescence of a perylene probe could be quenched by the silver nanoparticles (Ag NPs). The Ag NPs could be etched by H2O2 generated from the enzymatic oxidation of glucose.

View Article and Find Full Text PDF