Nowadays, Machine Learning methods have proven to be highly effective on the identification of various types of diseases, in the form of predictive models. Guillain-Barré syndrome (GBS) is a potentially fatal autoimmune neurological disorder that has barely been studied with computational techniques and few predictive models have been proposed. In a previous study, single classifiers were successfully used to build a predictive model.
View Article and Find Full Text PDFComput Math Methods Med
November 2017
. Guillain-Barré Syndrome (GBS) is a potentially fatal autoimmune neurological disorder. The severity varies among the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AMAN), Acute Motor Sensory Axonal Neuropathy (AMSAN), and Miller-Fisher Syndrome (MF).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
The severity of Guillain-Barré Syndrome (GBS) varies among subtypes, which can be mainly Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AMAN), Acute Motor Sensory Axonal Neuropathy (AMSAN) and Miller-Fisher Syndrome (MF). In this study, we use a real dataset that contains clinical, serological, and nerve conduction tests data obtained from 129 GBS patients. We apply C4.
View Article and Find Full Text PDFGuillain-Barré syndrome (GBS) is a neurological disorder which has not been explored using clustering algorithms. Clustering algorithms perform more efficiently when they work only with relevant features. In this work, we applied correlation-based feature selection (CFS), chi-squared, information gain, symmetrical uncertainty, and consistency filter methods to select the most relevant features from a 156-feature real dataset.
View Article and Find Full Text PDF