Transient environmental exposures during mammalian development can permanently alter gene expression and metabolism by influencing the establishment of epigenetic gene regulatory mechanisms. The genomic characteristics that confer such epigenetic plasticity upon specific loci, however, have not been characterized. Methyl donor supplementation of female mice before and during pregnancy permanently increases DNA methylation at the viable yellow agouti (A(vy)) metastable epiallele in the offspring.
View Article and Find Full Text PDFIGF2 loss of imprinting (LOI) is fairly prevalent and implicated in the pathogenesis of human cancer and developmental disease; however, the causes of this phenomenon are largely unknown. We determined whether the post-weaning diet of mice affects allelic expression and CpG methylation of Igf2. C57BL/6JxCast/EiJ F1 hybrid mice were weaned onto (1) a standard natural ingredient control diet, (2) a synthetic control diet or (3) a synthetic methyl-donor-deficient diet lacking folic acid, vitamin B(12), methionine and choline.
View Article and Find Full Text PDF