Publications by authors named "Juan-Pablo Huertas"

This study delves into an exploration of the antimicrobial and antibiofilm properties of the essential oils (EOs) of cinnamon, garlic, and onion on Enteritidis. Firstly, disc diffusion and minimum inhibitory concentration (MIC) techniques were employed to assess the antibacterial activity of the EOs. Additionally, the study explored the effect of these EOs on both initial cell attachment and 24 h-preformed biofilms.

View Article and Find Full Text PDF

Microbial cells respond to sub-lethal stresses with several physiological changes to increase their chance of survival. These changes are of high relevance when combined treatments (hurdle technology) are applied during food production, as the cells surviving the first hurdle may have greater resistance to subsequent treatments than untreated cells. In this study, we analyzed if develops increased resistance to thermal treatments after the application of an acid shock.

View Article and Find Full Text PDF

is a spoilage microorganism responsible for relevant product and economic losses in the beverage and juice industry. Spores of this microorganism can survive industrial heat treatments and cause spoilage during posterior storage. Therefore, an effective design of processing treatments requires an accurate understanding of the heat resistance of this microorganism.

View Article and Find Full Text PDF

Consumers' demands for ready-to-eat, fresh-like products are on the rise during the last years. This type of products have minimal processing conditions that can enable the survival and replication of pathogenic microorganisms. Among them, Listeria monocytogenes is of special concern, due to its relatively high mortality rate and its ability to replicate under refrigeration conditions.

View Article and Find Full Text PDF

This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates.

View Article and Find Full Text PDF

The application of d-limonene in form of nanoemulsion has been proved to reduce dramatically the thermal resistance of Listeria monocytogenes in culture media. The present research shows very promising results on the application in food products. The thermal resistance of L.

View Article and Find Full Text PDF

Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear.

View Article and Find Full Text PDF

The aim of this research was to evaluate the effect of thermal treatments (isothermal or nonisothermal) combined with nisin, a natural antimicrobial, on the survival and recovery of Clostridium sporogenes spores. The addition of nisin to the heating medium at concentrations up to 0.1 mg liter(-1) did not reduce the heat resistance of C.

View Article and Find Full Text PDF

In the present study, it was evaluated how two different thermal treatments (Mild and Severe) may affect the anthocyanin content, antioxidant capacity (ABTS(+), DPPH, and FRAP), quality (CIELAB colour parameters), and microbiological safety of a new isotonic drink made of lemon and maqui berry over a commercial storage simulation using a shelf life of 56days at two preservation temperature (7°C and 37°C). Both heat treatments did not affect drastically the anthocyanins content and their percentage of retention. The antioxidant capacity, probably because of the short time, was also not affected.

View Article and Find Full Text PDF

Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures.

View Article and Find Full Text PDF

In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments.

View Article and Find Full Text PDF