Clinically unpredictable retention following fat grafting remains outstanding problems because of the unrevealed mechanism of grafted fat survival. The role of autophagy, a process to maintain cellular homeostasis through recycling cellular debris, has yet been to be reported in fat grafting. This study aims to improve the survival of fat grafting through the autophagy.
View Article and Find Full Text PDFBackground: Currently, there is a lack in therapy that promotes the reepithelialization of diabetic wounds as an alternative to skin grafting. Here, the authors hypothesized that extracellular vesicles from adipose-derived stem cells (ADSC-EVs) could accelerate wound closure through rescuing the function of keratinocytes in diabetic mice.
Methods: The effect of ADSC-EVs on the biological function of human keratinocyte cells was assayed in vitro.
Background: Random flaps are widely used for wound repair. However, flap necrosis is a serious complication leading to the failure of operation. Our previous study demonstrated a great proangiogenic potential of hypoxia-treated adipose-derived stem cells-extracellular vesicles (HT-ASC-EVs).
View Article and Find Full Text PDF