Publications by authors named "Juan-Jose Lopez-Moya"

Article Synopsis
  • RNA viruses have smart ways to use their small genomes to create many different proteins, and one of these ways is called transcriptional slippage (TS).
  • TS can cause changes in the RNA that can help the virus adapt and evolve, allowing it to make different proteins than usual.
  • Scientists have found that this slippage happens more often than expected in certain virus families and can be influenced by random factors, which means it could play a big role in how viruses change over time.
View Article and Find Full Text PDF

The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi).

View Article and Find Full Text PDF

Numerous species of plant viruses are naturally transmitted by insect vectors, mainly homopterans like aphids and whiteflies. Depending on the vector specificity and the mode of transmission, different durations of the periods for acquisition, retention, and inoculation are required for a successful transmission. Therefore, the experimental setup to perform controlled transmission experiments under laboratory conditions involves handling the vector organisms and managing the times for the different steps of the process to optimize and standardize the results.

View Article and Find Full Text PDF

Resistance to cucumber mosaic virus (CMV) strain LS in melon is controlled by the gene , which restricts phloem entry. In nature, CMV is commonly found in mixed infections, particularly with potyviruses, where a synergistic effect is frequently produced. We have explored the possibility that this synergism could help CMV-LS to overcome -mediated resistance.

View Article and Find Full Text PDF

Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana.

View Article and Find Full Text PDF

The family includes plant viruses with single-stranded, positive-sense RNA genomes of 8-11 kb and flexuous filamentous particles 650-950 nm long and 11-20 nm wide. Genera in the family are distinguished by the host range, genomic features and phylogeny of the member viruses. Most genomes are monopartite, but those of members of the genus are bipartite.

View Article and Find Full Text PDF

Cucumber vein yellowing virus (CVYV) is an emerging virus on cucurbits in the Mediterranean Basin, against which few resistance sources are available, particularly in melon. The melon accession PI 164323 displays complete resistance to isolate CVYV-Esp, and accession HSD 2458 presents a tolerance, i.e.

View Article and Find Full Text PDF

Susceptible plants infected by single or multiple viruses can differ in symptoms and other alterations influencing virus dissemination. Furthermore, behavior of viruliferous vectors may be altered in certain cases to favor acquisition and inoculation processes conductive to virus transmission. We explored single and mixed infections frequently occurring in tomato crops, caused by two viruses transmitted by the whitefly : (TYLCV, , Geminiviridae) and (ToCV, , Closteroviridae).

View Article and Find Full Text PDF

The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-). Significantly greater quantities of VLPs could be purified when pEff was used.

View Article and Find Full Text PDF

RNA silencing is a sequence specific post-transcriptional mechanism regulating important biological processes including antiviral defense in plants. Argonaute (AGO) proteins, the catalytic subunits of the silencing complexes, are loaded with small RNAs to execute the sequence specific RNA cleavage or translational inhibition. Plants encode several AGO proteins and a few of them, especially AGO1 and AGO2, have been shown to be required for antiviral silencing.

View Article and Find Full Text PDF

Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus (WMV) and the crinivirus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25.

View Article and Find Full Text PDF

The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant.

View Article and Find Full Text PDF
Article Synopsis
  • - Mixed viral infections in melon plants can lead to complex interactions between viruses, notably the crinivirus CYSDV and the potyvirus WMV, affecting how they are transmitted by insect vectors like whiteflies and aphids.
  • - The study found that while CYSDV levels were higher in mixed infections and transmission rates for whiteflies remained consistent, WMV showed reduced accumulation without affecting its transmission via aphids.
  • - Over time, plants with mixed infections exhibited some recovery from severe symptoms, suggesting that mixed infections could actually benefit CYSDV spread while allowing WMV to maintain its transmission through aphids.
View Article and Find Full Text PDF
Article Synopsis
  • - Plant viruses, like Potyvirus, produce proteins that suppress plant defenses; the HCPro protein from Potyvirus contributes to this by aiding in aphid transmission and viral replication.
  • - A recent study on Sweet potato feathery mottle virus (SPFMV) identified an extra protein from polymerase slippage (P1N-PISPO) that, along with the P1 protein, shows RNA silencing suppression (RSS) activity unlike HCPro.
  • - The research demonstrates that not only P1 and P1N-PISPO but also HCPro can exhibit RSS activity under specific conditions, highlighting the complexity of viral silencing suppression systems and their evolution in sweet potato-infecting viruses.
View Article and Find Full Text PDF

(PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner.

View Article and Find Full Text PDF

RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways.

View Article and Find Full Text PDF

The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680-900 nm long and 11-20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.

View Article and Find Full Text PDF

Unlabelled: The positive-sense RNA genome of Sweet potato feathery mottle virus (SPFMV) (genus Potyvirus, family Potyviridae) contains a large open reading frame (ORF) of 3,494 codons translatable as a polyprotein and two embedded shorter ORFs in the -1 frame: PISPO, of 230 codons, and PIPO, of 66 codons, located in the P1 and P3 regions, respectively. PISPO is specific to some sweet potato-infecting potyviruses, while PIPO is present in all potyvirids. In SPFMV these two extra ORFs are preceded by conserved G2A6 motifs.

View Article and Find Full Text PDF

Background: Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), have emerged as important regulators of eukaryotic gene expression. In plants, miRNAs play critical roles in development, nutrient homeostasis and abiotic stress responses. Accumulating evidence also reveals that sRNAs are involved in plant immunity.

View Article and Find Full Text PDF

RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery.

View Article and Find Full Text PDF

Potyviruses are plant pathogens transmitted by aphids in a non-persistent manner. During transmission, the virus-encoded factor helper-component protease (HCPro) is presumed to act as a molecular bridge, mediating the reversible retention of virions to uncharacterized binding sites in the vector mouthparts. Whilst the predicted interaction between HCPro and the coat protein (CP) of virions has been confirmed experimentally, the characterization of putative HCPro-specific receptors in aphids has remained elusive, with the exception of a report that described binding of HCPro of zucchini yellow mosaic virus to several cuticle proteins.

View Article and Find Full Text PDF

Background: Plant genomes have been transformed with full-length cDNA copies of viral genomes, giving rise to what has been called 'amplicon' systems, trying to combine the genetic stability of transgenic plants with the elevated replication rate of plant viruses. However, amplicons' performance has been very variable regardless of the virus on which they are based. This has boosted further interest in understanding the underlying mechanisms that cause this behavior differences, and in developing strategies to control amplicon expression.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small RNAs acting as regulators of eukaryotic gene expression at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptation to the environment. We show that the accumulation of four Arabidopsis miRNAs (miR171, miR398, miR168 and miR167) oscillates during the diurnal cycle, their accumulation increasing during the light period of the daytime and decreasing in darkness.

View Article and Find Full Text PDF

Genome structure and sequence are notably conserved between members of the family Potyviridae. However, some genomic regions of these viruses, such as that encoding the P1 protein, show strikingly high variability. In this study, some partially conserved motifs were identified upstream of the quite well-conserved protease domain located near the P1 C terminus.

View Article and Find Full Text PDF