Understanding how growth and reproduction will adapt to changing environmental conditions is a fundamental question in evolutionary ecology, but predicting the responses of specific taxa is challenging. Analyses of the physiological effects of climate change upon life history evolution rarely consider alternative hypothesized mechanisms, such as size-dependent foraging and the risk of predation, simultaneously shaping optimal growth patterns. To test for interactions between these mechanisms, we embedded a state-dependent energetic model in an ecosystem size-spectrum to ask whether prey availability (foraging) and risk of predation experienced by individual fish can explain observed diversity in life histories of fishes.
View Article and Find Full Text PDFFishing activity is closely monitored to an increasing degree, but its effects on biodiversity have not received such attention. Using iconic and well-studied fish species such as tunas, billfishes, and sharks, we calculate a continuous Red List Index of yearly changes in extinction risk over 70 years to track progress toward global sustainability and biodiversity targets. We show that this well-established biodiversity indicator is highly sensitive and responsive to fishing mortality.
View Article and Find Full Text PDFMeasuring the demographic parameters of exploited populations is central to predicting their vulnerability and extinction risk. However, current rates of population decline and species loss greatly outpace our ability to empirically monitor all populations that are potentially threatened.The scale of this problem cannot be addressed through additional data collection alone, and therefore it is a common practice to conduct population assessments based on surrogate data collected from similar species.
View Article and Find Full Text PDFHow can we track population trends when monitoring data are sparse? Population declines can go undetected, despite ongoing threats. For example, only one of every 200 harvested species are monitored. This gap leads to uncertainty about the seriousness of declines and hampers effective conservation.
View Article and Find Full Text PDFLarger-bodied species in a wide range of taxonomic groups including mammals, fishes and birds tend to decline more steeply and are at greater risk of extinction. Yet, the diversity in life histories is governed not only by body size, but also by time-related traits. A key question is whether this size-dependency of vulnerability also holds, not just locally, but globally across a wider range of environments.
View Article and Find Full Text PDFScombrids (tunas, bonitos, Spanish mackerels and mackerels) support important fisheries in tropical, subtropical and temperate waters around the world, being one of the most economically- and socially-important marine species globally. Their sustainable exploitation, management and conservation depend on accurate life history information for the development of quantitative fisheries stock assessments, and in the fishery data-poor situations for the identification of vulnerable species. Here, we assemble life history traits (maximum size, growth, longevity, maturity, fecundity, spawning duration and spawning interval) for the 51 species of scombrids globally.
View Article and Find Full Text PDFTunas and their relatives dominate the world's largest ecosystems and sustain some of the most valuable fisheries. The impacts of fishing on these species have been debated intensively over the past decade, giving rise to divergent views on the scale and extent of the impacts of fisheries on pelagic ecosystems. We use all available age-structured stock assessments to evaluate the adult biomass trajectories and exploitation status of 26 populations of tunas and their relatives (17 tunas, 5 mackerels, and 4 Spanish mackerels) from 1954 to 2006.
View Article and Find Full Text PDF