Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g.
View Article and Find Full Text PDFAprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19.
View Article and Find Full Text PDFNeuropathic pain (NP) is a challenging condition to treat, as the need for new drugs to treat NP is an unmet goal. We investigated the analgesic potential of a new sulfated disaccharide compound, named BIS014. Oral administration (p.
View Article and Find Full Text PDFEur J Clin Invest
June 2022
Background: SARS-CoV-2 virus requires host proteases to cleave its spike protein to bind to its ACE2 target through a two-step furin-mediated entry mechanism. Aprotinin is a broad-spectrum protease inhibitor that has been employed as antiviral drug for other human respiratory viruses. Also, it has important anti-inflammatory properties for inhibiting the innate immunity contact system.
View Article and Find Full Text PDFIn recent years, the "non-autonomous motor neuron death" hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest.
View Article and Find Full Text PDFResveratrol (RESV) is one of the most abundant polyphenol-stilbene compounds found in red wine with well-established cardioprotective and antihypertensive effects. Hyperactivity of the sympathoadrenal axis seems to be one of the major contributing factors in the pathogenesis of human essential hypertension. Alterations in outward voltage-dependent potassium currents (I) and inward voltage-dependent sodium (I), calcium (I) and nicotinic (I) currents, CCs excitability, Ca homeostasis, and catecholamine exocytosis were previously related to the hypertensive state.
View Article and Find Full Text PDFDiabetes mellitus and hypertension are diseases that are strongly correlated. A major factor in this correlation is the renin-angiotensin system (RAS), with the peptide angiotensin II being a key component. This study analyzed the impact of Angiotensin Type 1 receptor (AT1R) and Angiotension Type 2 receptor (AT2R) in atrial function.
View Article and Find Full Text PDFStudies have reported the importance of mitochondria in sperm functionality. However, for some species, the glycolytic pathway appears to be as important as oxidative phosphorylation in ATP synthesis and sperm kinetics. These mechanisms have not been fully elucidated for bovine spermatozoa.
View Article and Find Full Text PDFEur J Pharmacol
May 2017
Curr Vasc Pharmacol
December 2017
Background: Chronic ethanol (EtOH) consumption has been associated with deleterious effects on the cardiovascular system by abnormal calcium (Ca2+) handling. Store-operated Ca2+ entry (SOCE) is related to cardiovascular remodeling which leads to the hypertension development, and the coupling between STIM-1 (ER Ca2+ sensor) and Orai-1 (channel pore) is a key mechanism to control SOCE through of store-operated Ca2+ channels (SOCCs). However, the role of STIM-1/Orai-1-mediated SOCE and its cross-talk with EtOH-triggered vascular remodeling and hypertension remain poorly understood.
View Article and Find Full Text PDFAdrenal chromaffin cells (CCs) have been used extensively in studies aimed at revealing the intricacies of the Ca -dependent early and late steps of regulated exocytosis. They have also served as invaluable models to study the kinetics of single-vesicle exocytotic events to infer the characteristics of opening and closing of the exocytotic fusion pore. We have here tested the hypothesis that stimulation at room temperature of CCs from mice C57BL/6 with physiological acetylcholine (ACh) and with other secretagogues (dimethylphenylpiperazinium, high K , muscarine, histamine, caffeine), alone or in combination, could trigger amperometric spike events with different kinetics.
View Article and Find Full Text PDFIn search of druggable synthetic lipids that function as potential modulators of synaptic transmission and plasticity, we synthesized sulfoglycolipid IG20, which stimulates neuritic outgrowth. Here, we have explored its effects on ion channels and exocytosis in bovine chromaffin cells. IG20 augmented the rate of basal catecholamine release.
View Article and Find Full Text PDFHere we review the contribution of the various subtypes of voltage-activated calcium channels (VACCs) to the regulation of catecholamine release from chromaffin cells (CCs) at early life. Patch-clamp recording of inward currents through VACCs has revealed the expression of high-threshold VACCs (high-VACCs) of the L, N, and PQ subtypes in rat embryo CCs and ovine embryo CCs. Low-threshold VACC (low-VACC) currents (T-type) have also been recorded in rat embryo CCs and rat neonatal slices of adrenal medullae.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2015
Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established.
View Article and Find Full Text PDFExpert Opin Ther Pat
September 2014
Introduction: Altered homeostasis of cell calcium movement is a central stage in multiple diseases of CNS. This explains the great therapeutic interest in blockers for the various subtypes of voltage-activated calcium channels (VACCs) expressed in neurons. Mitigation of Ca(2+) entry excess elicited by those blockers may restore the altered synaptic transmission, synaptic plasticity and gene expression to normal parameters, ending the enhanced neuronal vulnerability.
View Article and Find Full Text PDFAt early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.
View Article and Find Full Text PDFFrom experiments performed at room temperature, we know that the buffering of Ca(2+) by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca(2+)]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca(2+) transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca(2+) buffering to the shaping of [Ca(2+)]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca(2+) uniporter (mCUP) with Ru360 or the mitochondrial Na(+)/Ca(2+) exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca(2+) cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX.
View Article and Find Full Text PDFSkeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system.
View Article and Find Full Text PDFThe activity of the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) is highly sensitive to temperature. We took advantage of this fact to explore here the effects of the NCX blocker KB-R7943 (KBR) at 22 and 37°C on the kinetics of Ca(2+) currents (ICa), cytosolic Ca(2+) ([Ca(2+)]c) transients, and catecholamine release from bovine chromaffin cells (BCCs) stimulated with high K(+), caffeine, or histamine. At 22°C, the effects of KBR on those parameters were meager or nil.
View Article and Find Full Text PDFJ Neurochem
April 2013
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage- and current-clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole-cell Na(+)-dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca(2+)]c).
View Article and Find Full Text PDFSince the first generation of MAO inhibitors was developed, more than fifty years ago, this family of drugs has been ups and downs over the last decades. Actually, interest in MAO inhibitors is reviving and the emergence of new advances in the rational design of molecules and new techniques to predict the in vivo behavior has encouraged the research for new drugs with therapeutic potential in this area. The classic MAOIs have been widely used as antidepressants during the two decades after its introduction in clinic.
View Article and Find Full Text PDFFor the last two decades, most efforts on new drug development to treat Alzheimer's disease have been focused to inhibit the synthesis of amyloid beta (Aβ), to prevent Aβ deposition, or to clear up Aβ plaques from the brain of Alzheimer's disease (AD) patients. Other pathogenic mechanisms such as the hyperphosphorylation of the microtubular tau protein (that forms neurofibrillary tangles) have also been addressed as, for instance, with inhibitors of the enzyme glycogen synthase-3 kinase beta (GSK3β). However, in spite of their proven efficacy in animal models of AD, all these compounds have so far failed in clinical trials done in AD patients.
View Article and Find Full Text PDFThe cardiovascular protecting effect of the grape fruit trans-resveratrol has been explained among other factors, through augmentation of nitric oxide (NO) production in cardiovascular tissues. Another effect of low resveratrol concentration is the inhibition of single-vesicle quantal release of catecholamine from bovine adrenal chromaffin cells, that was recently suggested to be an additional factor contributing to its beneficial cardiovascular effects. We have investigated here the effects of a low concentration of trans-resveratrol (1 μM) on Ca(2+) and NO signaling pathways in bovine chromaffin cells, in an attempt to understand the mechanism underlying its previously reported inhibitory effects on quantal secretion.
View Article and Find Full Text PDFThe serotonin (5-hydroxytryptamine; 5-HT) 2A receptor is a cell surface class A G protein-coupled receptor that regulates a multitude of physiological functions of the body and is a target for antipsychotic drugs. Here we found by means of fluorescence resonance energy transfer and immunoprecipitation studies that the 5-HT(2A)-receptor homodimerized in live cells, which we linked with its antagonist-dependent fingerprint in both binding and receptor signaling. Some antagonists, like the atypical antipsychotics clozapine and risperidone, differentiate themselves from others, like the typical antipsychotic haloperidol, antagonizing these 5-HT(2A) receptor-mediated functions in a pathway-specific manner, explained here by a new model of multiple active interconvertible conformations at dimeric receptors.
View Article and Find Full Text PDF