Publications by authors named "Juan-Carlos Fraile"

Partially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously.

View Article and Find Full Text PDF

Livestock monitoring is a task traditionally carried out through direct observation by experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events that require human action, such as calving. However, this continuous monitoring is in many cases not feasible.

View Article and Find Full Text PDF

Prolonged hospitalization in severe COVID-19 cases can lead to substantial muscle loss and functional deterioration. While rehabilitation is essential, conventional approaches face capacity challenges. Therefore, evaluating the effectiveness of robotic-assisted rehabilitation for patients with post-COVID-19 fatigue syndrome to enhance both motor function and overall recovery holds paramount significance.

View Article and Find Full Text PDF

The RobHand (Robot for Hand Rehabilitation) is a robotic neuromotor rehabilitation exoskeleton that assists in performing flexion and extension movements of the fingers. The present case study assesses changes in manual function and hand muscle strength of four selected stroke patients after completion of an established training program. In addition, safety and user satisfaction are also evaluated.

View Article and Find Full Text PDF

The effectiveness of EMG biofeedback with neurorehabilitation robotic platforms has not been previously addressed. The present work evaluates the influence of an EMG-based visual biofeedback on the user performance when performing EMG-driven bilateral exercises with a robotic hand exoskeleton. Eighteen healthy subjects were asked to perform 1-min randomly generated sequences of hand gestures (rest, open and close) in four different conditions resulting from the combination of using or not (1) EMG-based visual biofeedback and (2) kinesthetic feedback from the exoskeleton movement.

View Article and Find Full Text PDF

Cerebrovascular accidents have physical, cognitive and emotional effects. During rehabilitation, the main focus is placed on motor recovery, yet the patient's emotional state should also be considered. For this reason, validating robotic rehabilitation systems should not only focus on their effectiveness related to the physical recovery but also on the patient's emotional response.

View Article and Find Full Text PDF

Medical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the lack of an annotated dataset has hampered its research.

View Article and Find Full Text PDF

In this study, new low-cost neck-mounted sensorized wearable device is presented to help farmers detect the onset of calving in extensive livestock farming by continuously monitoring cow data. The device incorporates three sensors: an inertial measurement unit (IMU), a global navigation satellite system (GNSS) receiver, and a thermometer. The hypothesis of this study was that onset calving is detectable through the analyses of the number of transitions between lying and standing of the animal (lying bouts).

View Article and Find Full Text PDF

Depending on their use, electrodes must have a certain size and design so as not to compromise their electrical characteristics. It is fundamental to be aware of all dependences on external factors that vary the electrochemical characteristics of the electrodes. When using implantable electrodes, the maximum charge injection capacity (CIC) is the total amount of charge that can be injected into the tissue in a reversible way.

View Article and Find Full Text PDF

The design of safe stimulation protocols for functional electrostimulation requires knowledge of the "maximum reversible charge injection capacity" of the implantable microelectrodes. One of the main difficulties encountered in characterizing such microelectrodes is the calculation of the access voltage . This paper proposes a method to calculate that does not require prior knowledge of the overpotential terms and of the electrolyte (or excitable tissue) resistance, which is an advantage for in vivo electrochemical characterization of microelectrodes.

View Article and Find Full Text PDF

Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions.

View Article and Find Full Text PDF