The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions.
View Article and Find Full Text PDFThis study shows how the NiFeSe site of an anaerobically purified O2-resistant hydrogenase reacts with air to give a seleninate as the first product. Less oxidized states of the active site are readily reduced in the presence of X-rays. Reductive enzyme activation requires an efficient pathway for water escape.
View Article and Find Full Text PDFIn hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzyme's selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases.
View Article and Find Full Text PDFHydrogenases catalyze the conversion between 2H(+) + 2e(-) and H(2)(1). Most of these enzymes are inhibited by O(2), which represents a major drawback for their use in biotechnological applications. Improving hydrogenase O(2) tolerance is therefore a major contemporary challenge to allow the implementation of a sustainable hydrogen economy.
View Article and Find Full Text PDFhBChE [human BChE (butyrylcholinesterase)] naturally scavenges OPs (organophosphates). This bioscavenger is currently in Clinical Phase I for pretreatment of OP intoxication. Phosphylated ChEs (cholinesterases) can undergo a spontaneous time-dependent process called 'aging' during which the conjugate is dealkylated, leading to creation of an enzyme that cannot be reactivated.
View Article and Find Full Text PDFThe reaction of the new and structurally characterized covalent {Mn(CO)(3)(H(2)O)(2)}(+)-lysozyme adduct with NiS(4) and NiN(2)S(2) complexes generates binuclear Ni-Mn complexes; relevance to the reactivity of the protein-bound {Fe(CO)(CN)(2)} intermediate during maturation of [NiFe] hydrogenases is discussed.
View Article and Find Full Text PDFInnate immunity relies critically upon the ability of a few pattern recognition molecules to sense molecular markers on pathogens, but little is known about these interactions at the atomic level. Human L- and H-ficolins are soluble oligomeric defence proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. The X-ray structures of their trimeric recognition domains, alone and in complex with various ligands, have been solved to resolutions up to 1.
View Article and Find Full Text PDFDrosophila E75 is a member of the nuclear receptor superfamily. These eukaryotic transcription factors are involved in almost all physiological processes. They regulate transcription in response to binding of rigid hydrophobic hormone ligands.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2006
Human phosphate-binding protein (HPBP) was serendipitously discovered by crystallization and X-ray crystallography. HPBP belongs to a eukaryotic protein family named DING that is systematically absent from the genomic database. This apoprotein of 38 kDa copurifies with the HDL-associated apoprotein paraoxonase (PON1) and binds inorganic phosphate.
View Article and Find Full Text PDFIron regulatory proteins (IRPs) control the translation of proteins involved in iron uptake, storage and utilization by binding to specific noncoding sequences of the corresponding mRNAs known as iron-responsive elements (IREs). This strong interaction assures proper iron homeostasis in animal cells under iron shortage. Conversely, under iron-replete conditions, IRP1 binds a [4Fe-4S] cluster and functions as cytosolic aconitase.
View Article and Find Full Text PDFNuclear receptors form an important class of transcription regulators in metazoans. To learn more about the evolution of these proteins, we have initiated structural studies on nuclear receptor ligand-binding domains from various animals. Here we present the crystal structure of the ligand-binding domain (LBD) of the retinoid X receptor (RXR) from the mollusc Biomphalaria glabrata.
View Article and Find Full Text PDFRecent experimental and theoretical studies have focused on the mechanism of the A-cluster active site of acetyl-CoA synthase that produces acetyl-CoA from a methyl group, carbon monoxide, and CoA. Several proposals have been made concerning the redox states of the (Ni-Ni) bimetallic center and the iron-sulfur cluster connected to one of the metals. Using hybrid density functional theory, we have investigated putative intermediate states from the catalytic cycle.
View Article and Find Full Text PDFMAp19 is an alternative splicing product of the MASP-2 gene comprising the N-terminal CUB1-epidermal growth factor (EGF) segment of MASP-2, plus four additional residues at its C-terminal end. Like full-length MASP-2, it forms Ca(2+)-dependent complexes with mannan-binding lectin (MBL) and L-ficolin. The x-ray structure of human MAp19 was solved to a resolution of 2.
View Article and Find Full Text PDFC1, the complex that triggers the classical pathway of complement, is assembled from two modular proteases C1r and C1s and a recognition protein C1q. The N-terminal CUB1-EGF segments of C1r and C1s are key elements of the C1 architecture, because they mediate both Ca2+-dependent C1r-C1s association and interaction with C1q. The crystal structure of the interaction domain of C1s has been solved and refined to 1.
View Article and Find Full Text PDFT cell receptor (TCR) binding degeneracy lies at the heart of several physiological and pathological phenomena, yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and an octapeptide (VSV8) bound to the H-2K(b) major histocompatibility complex molecule at a 2.
View Article and Find Full Text PDFC1r is the serine protease (SP) that mediates autoactivation of C1, the complex that triggers the classical complement pathway. We have determined the crystal structure of two fragments from the human C1r catalytic domain, each encompassing the second complement control protein (CCP2) module and the SP domain. The wild-type species has an active structure, whereas the S637A mutant is a zymogen.
View Article and Find Full Text PDFC1 is the multimolecular protease that triggers activation of the classical pathway of complement, a major element of antimicrobial host defense also involved in immune tolerance and various pathologies. This 790,000 Da complex is formed from the association of a recognition protein, C1q, and a catalytic subunit, the Ca2+-dependent tetramer C1s-C1r-C1r-C1s comprising two copies of each of the modular proteases C1r and C1s. Early studies mainly based on biochemical analysis and electron microscopy of C1 and its isolated components have allowed for characterization of their domain structure and led to a low-resolution model of the C1 complex in which the elongated C1s-C1r-C1r-C1s tetramer folds into a more compact, "8-shaped" conformation upon interaction with C1q.
View Article and Find Full Text PDFC1r, the enzyme responsible for intrinsic activation of the C1 complex of complement, is a modular serine protease featuring an overall structural organization homologous to those of C1s and the mannan-binding lectin-associated serine proteases (MASPs). This review will initially summarize current information on the structure and function of C1r, with particular emphasis on the three-dimensional structure of its catalytic domain, which provides new insights into the activation mechanism of C1. The second part of this review will focus on recent discoveries dealing with a truncated, C1r-related protein, and the occurrence in the mouse of two isoforms, C1rA and C1rB, exhibiting tissue-specific expression patterns.
View Article and Find Full Text PDFThe elongated complementary-determining region (CDR) 3beta found in the unliganded KB5-C20 TCR protrudes from the antigen binding site and prevents its docking onto the peptide/MHC (pMHC) surface according to a canonical diagonal orientation. We now present the crystal structure of a complex involving the KB5-C20 TCR and an octapeptide bound to the allogeneic H-2K(b) MHC class I molecule. This structure reveals how a tremendously large CDR3beta conformational change allows the KB5-C20 TCR to adapt to the rather constrained pMHC surface and achieve a diagonal docking mode.
View Article and Find Full Text PDFC1r is the modular serine protease (SP) that mediates autolytic activation of C1, the macromolecular complex that triggers the classical pathway of complement. The crystal structure of a mutated, proenzyme form of the catalytic domain of human C1r, comprising the first and second complement control protein modules (CCP1, CCP2) and the SP domain has been solved and refined to 2.9 A resolution.
View Article and Find Full Text PDF