Tracing and manipulating cells in embryos are essential to understand development. Lipophilic dye microinjections, viral transfection and iontophoresis have been key to map the origin of the progenitor cells that form the different organs in the post-implantation mouse embryo. These techniques require advanced manipulation skills and only iontophoresis, a demanding approach of limited efficiency, has been used for single-cell labelling.
View Article and Find Full Text PDFIn mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells.
View Article and Find Full Text PDFThe small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa.
View Article and Find Full Text PDFA set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of Transposable Elements (TEs) to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. We have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis.
View Article and Find Full Text PDFAdenosine deaminases-acting-on-RNA (ADAR) proteins induce adenosine-to-inosine editing in double-stranded RNA molecules. This editing generates RNA diversity at the post-transcriptional level, and it has been implicated in the control of cell differentiation and development. The editing of microRNA (miRNA) precursors, along with Tudor-SN (Snd1) activity, could lead to the elimination of selected miRNAs and reprogram miRNA activity.
View Article and Find Full Text PDFBackground: Interchange of genetically modified (GM) mice between laboratories using embryos provides several advantages. Not only is transport stress avoided, but also the health status of the recipient colony is not compromised. Embryos do not need to be shipped in frozen stage, which requires expensive packaging in addition to a certain degree of expertise in order to freeze and thaw them correctly.
View Article and Find Full Text PDFIn this study, we evaluated the effects of genistein supplementation of the thawing extender on frozen-thawed human semen parameters. We analyzed the effect of supplementation on sperm motility, capacitation (membrane lipid disorder), reactive oxygen species (ROS) generation, chromatin condensation and DNA damage. Using this preliminary information, it maybe possible to improve the cryopreservation process and reduce the cellular damage.
View Article and Find Full Text PDFWe have reported that in vitro culture (IVC) of preimplantation mouse embryos in the presence of FCS produces long-term effects (LTE) on development, growth and behaviour of the offspring at adult age. To analyse the mechanisms underlying this phenomenon, we have examined development and global alterations in gene expression in the mouse blastocysts produced in the presence of FCS, conditions known to be suboptimal and that generate LTE. Embryos cultured in vitro in KSOM and in KSOM+FCS had a reduced number of cells in the inner cell mass at the blastocyst stage compared with in vivo derived embryos; however, only culture in KSOM+FCS leads to a reduction in the number of trophoblast cells.
View Article and Find Full Text PDFGenetic and environmental factors produce different levels of DNA damage in spermatozoa. Usually, DNA-fragmented spermatozoa (DFS) are used with intracytoplasmic sperm injection (ICSI) treatments in human reproduction, and use of DFS is still a matter of concern. The purpose of the present study was to investigate the long-term consequences on development and behavior of mice generated by ICSI with DFS.
View Article and Find Full Text PDF