Publications by authors named "Juan Valentin-Goyco"

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC.

View Article and Find Full Text PDF

The two human steroid 5α-reductase (5αR) enzymes catalyze the conversion 3-keto-Δ-steroids to their 5α-reduced congeners. In the genital skin and prostate, the type 2 isoenzyme converts testosterone (T) to the more potent androgen 5α-dihydrotestosterone (DHT), and intracellular DHT is essential for the morphogenesis of the undifferentiated external genitalia to the male phenotype. Both isoenzymes also metabolize other 19- and 21-carbon 3-keto-Δ-steroids, both endogenous compounds and some steroid-based drugs.

View Article and Find Full Text PDF

Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated.

View Article and Find Full Text PDF

Osilodrostat (LCI699) is a potent inhibitor of the human steroidogenic cytochromes P450 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2). LCI699 is FDA-approved for the treatment of Cushing disease, which is characterized by chronic overproduction of cortisol. While phase II and III clinical studies have proven the clinical efficacy and tolerability of LCI699 for treating Cushing disease, few studies have attempted to fully assess the effects of LCI699 on adrenal steroidogenesis.

View Article and Find Full Text PDF

Despite the fact that AML is the most common acute leukemia in adults, patient outcomes are poor necessitating the development of novel therapies. We identified that inhibition of Thioredoxin Reductase (TrxR) is a promising strategy for AML and report a highly potent and specific inhibitor of TrxR, S-250. Both pharmacologic and genetic inhibition of TrxR impairs the growth of human AML in mouse models.

View Article and Find Full Text PDF

The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli.

View Article and Find Full Text PDF