Western equine encephalitis virus (WEEV) is a mosquito-borne arbovirus (genus , family ) that has re-emerged in South America in late 2023, causing severe disease in both horses and humans after a nearly 40-year intermission period. We here describe the virological, serological, pathological, and molecular features of WEEV infection in horses during the 2023-2024 outbreak in Argentina. WEEV-infected horses developed neurological signs with mild to severe encephalitis associated with minimal to abundant WEEV-infected cells, as demonstrated by WEEV-specific in situ hybridization.
View Article and Find Full Text PDFSince the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction.
View Article and Find Full Text PDFIn this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama () with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) remains one of the major threats to animal health worldwide. Its causative agent, the FMD virus (FMDV), affects cloven-hoofed animals, including farm animals and wildlife species, inflicting severe damage to the international trade and livestock industry. FMDV antigenic variability remains one of the biggest challenges for vaccine-based control strategies.
View Article and Find Full Text PDFThe role of passively transferred sera in the protection against aerogenous foot-and-mouth disease (FMD) virus infection in cattle was evaluated using vaccine-induced immune serum preparations obtained at 7 and 26 days post-vaccination (dpv). We showed that circulating antibodies were sufficient to prevent disease generalization after oronasal infection in animals passively transferred with 26-dpv serum but not with the 7-dpv serum. Conversely, conventional FMD vaccination provided clinical protection at 7 dpv, promoting fast and robust antibody responses upon challenge and even though antibody titers were similar to those found in animals passively immunized with 7-dpv serum.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) recall responses against foot-and-mouth disease virus (FMDV) in FMD vaccinated cattle are utilized to study T-lymphocyte immunity against this virus. Here, a recall IFN-γ assay based on a commercial ELISA was set up using 308 samples from naïve and vaccinated cattle. The assay was used to study cross-reactive responses between different FMDV vaccine strains.
View Article and Find Full Text PDFImmunity to currently used oil-adjuvanted inactivated vaccines against foot-and-mouth disease virus (FMDV) has been studied in detail in adult animals; however, the influence of maternally derived antibodies transferred through colostrum (Mat-Abs) in the immune responses of vaccinated calves is less clear. Here, we report the anti-FMDV humoral responses elicited in calves with or without Mat-Abs that received one or two doses of the current tetravalent oil-adjuvanted commercial vaccine used in Argentina. Anti-FMDV (O1/Campos strain) antibodies (Abs) were evaluated by Liquid Phase Blocking ELISA (LPB-ELISA), virus neutralization test (VNT), isotype ELISA (IgG1, IgG2 and IgM) and avidity ELISA, to allow for the first time a more detailed description of the humoral responses elicited.
View Article and Find Full Text PDF