A monitoring study was carried out in two micro-catchments in the Reventazón basin, in Northern Cartago, Costa Rica; pesticide occurrence and water quality were analyzed. Twelve pesticides were detected, five insecticides (chlorpyrifos, carbofuran, cypermethrin, imidacloprid, and oxamyl), four fungicides (carbendazim, imazalil, metalaxyl, and thiabendazole), and three herbicides (diuron, linuron, and terbutryn); eight of them presented risk quotients RQ >1, which implies a high risk for the environment. The water quality evaluation included fourteen physicochemical and microbiological parameters, out of which thermotolerant coliforms, nitrate, and total phosphorus exceeded a selected threshold value in every sample.
View Article and Find Full Text PDFKnowledge of pesticides fate in tropical soils and how it could be affected by pyrolyzed biomass as amendment is limited. Combining conventional and radiotracer methods, as well as risk assessment tools, the effects of several charred agrowastes on the sorption, persistence, and ecological risk of the herbicides bromacil (BMC) and diuron (DRN) were evaluated in a tropical agricultural soil under laboratory conditions. Pineapple stubble (PS), palm oil fiber (PF), and coffee hull (CH) were charred at 300 (torrefied) and 600 °C (biochar) and applied to the soil at 10 and 20 t ha rates.
View Article and Find Full Text PDFA monitoring study was carried out in three agriculturally influenced microcatchments in Costa Rica during 2012-2014, for pesticides and water quality parameters. A total of 42 pesticides were analyzed, detecting the following in water samples: two herbicides (oxyfluorfen, diuron), four insecticides (carbofuran, chlorpyrifos, oxamyl, ethion), and two fungicides (thiabendazole, carbendazim); while in sediment samples only the insecticides, chlorpyrifos and cypermethrin were found. Water quality was also assessed by the Canadian Council of Ministers of the Environment Water Quality Index and the National Sanitation Water Quality Index, the first one classified most of the sampling point as marginal and poor quality while the second one classified most of them as good quality, the most affected parameters were nitrate, phosphorous, suspended solids and organic matter content.
View Article and Find Full Text PDFUnlabelled: A pesticide monitoring study including 80 and 60 active ingredients (in surface waters and sediments, respectively) was carried out in a river basin in Costa Rica during 2007-2012. A special emphasis was given on the exceptional ecological conditions of the tropical agro-ecosystem and the pesticide application strategies in order to establish a reliable monitoring network. A total of 135 water samples and 129 sediment samples were collected and analyzed.
View Article and Find Full Text PDFAntibiotic-containing wastewaters produced in agricultural activities may depress the pesticide-degrading capacity of biomixtures contained in biopurification systems. This work aimed to assay the effect of oxytetracycline (OTC) on the removal of carbofuran (CFN) in an optimized biomixture, and to determine the capacity of the system to dissipate OTC. During co-application of CFN+OTC, CFN removal and its accelerated degradation were not negatively affected.
View Article and Find Full Text PDFThe biopurification systems (BPS) used for the treatment of pesticide-containing wastewater must present a versatile degrading ability, in order to remove different active ingredients according to the crop protection programs. This work aimed to assay the simultaneous removal of several pesticides (combinations of herbicides/insecticides/fungicides, or insecticides/fungicides) in a biomixture used in a BPS over a period of 115 d, and in the presence of oxytetracycline (OTC), an antibiotic of agricultural use that could be present in wastewater from agricultural pesticide application practices. The biomixture was able to mostly remove the herbicides during the treatment (removal rates: atrazine ≈ linuron > ametryn), and suffered no inhibition by OTC (only slightly for ametryn).
View Article and Find Full Text PDFThe use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d.
View Article and Find Full Text PDFBiopurification systems (BPS) are design to remove pesticides from agricultural wastewater. This work assays for the first time the potential effect of an antibiotic of agricultural use (oxytetracycline, OTC) on the performance of a biomixture (biologically active core of BPS), considering that antibiotic-containing wastewaters are also produced in agricultural labors. The respiration of the biomixture was stimulated in the presence of increasing doses of OTC (≥100mgkg), and only slightly increased with lower doses (≤10mgkg).
View Article and Find Full Text PDFBiomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures.
View Article and Find Full Text PDFPesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries.
View Article and Find Full Text PDFA biomixture constitutes the active core of the on-farm biopurification systems, employed for the detoxification of pesticide-containing wastewaters. As biomixtures should be prepared considering the available local materials, the present work aimed to evaluate the performance of ten different biomixtures elaborated with by-products from local farming, in the degradation of the insecticide/nematicide carbofuran (CFN), in order to identify suitable autochthonous biomixtures to be used in the tropics. Five different lignocellulosic materials mixed with either compost or peat and soil were employed in the preparation of the biomixtures.
View Article and Find Full Text PDFDegradation and mineralization behavior of selected nematicides was studied in soil samples from fields cultivated with banana, potato, and coffee. Degradation assays in most of the studied soils revealed shorter half-lives for carbofuran (CBF) and ethoprophos (ETP) in samples with a history of treatment with these compounds, which may have been caused by enhanced biodegradation. A short half-life value for CBF degradation was also observed in a banana field with no previous exposure to this pesticide, but with a recent application of the carbamate insecticide oxamyl, which supports the hypothesis that preexposure to oxamyl may cause microbial adaptation towards degradation of CBF, an observation of a phenomenon not yet tested according to the literature reviewed.
View Article and Find Full Text PDFEnvironmental contamination with pesticides is an undesired consequence of agricultural activities. Biopurification systems (BPS) comprise a novel strategy to degrade pesticides from contaminated wastewaters, consisting of a highly active biological mixture confined in a container or excavation. The design of BPS promotes microbial activity, in particular by white rot fungi (WRF).
View Article and Find Full Text PDF