Publications by authors named "Juan Rubio-Lara"

Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies.

View Article and Find Full Text PDF

The adsorption behavior of β-nicotinamide adenine dinucleotide (NADH) at the carbon/electrolyte interface has been studied using a combination of neutron reflectometry (NR) and solution depletion isotherms. Coupling the NR technique with an electrochemical cell allowed observation of the reversible adsorption and desorption of the molecule at the electrode surface over a range of applied potentials. The overall surface coverage was low (30-50%), suggesting adsorption only at specific defect sites on the surface.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures.

View Article and Find Full Text PDF

Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology.

View Article and Find Full Text PDF

Single-molecule imaging of proteins using atomic force microscopy (AFM) is crucially dependent on protein attachment to ultraflat substrates. The template-stripping (TS) technique, which can be used to create large areas of atomically flat gold, has been used to great effect for this purpose. However, this approach requires an epoxy, which can swell in solution, causing surface roughening and substantially increasing the thickness of any sample, preventing its use on acoustic resonators in liquid.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers.

View Article and Find Full Text PDF