Publications by authors named "Juan Real"

The solubility of drugs remains one of the most challenging aspects of formulation development. Several technologies exist to enhance the properties of poorly soluble drugs, with nanocrystal (NC) and solid dispersion (SD) technologies being among the most important. This work compared NCs and SDs under identical conditions using albendazole as a model drug and 3D printing technology as the delivery method.

View Article and Find Full Text PDF

Background: Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The technology of 3D printing, especially vat photopolymerization, is valuable for integrating nanoparticles into complex formulations.

View Article and Find Full Text PDF

This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets. An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.

View Article and Find Full Text PDF

Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues. BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach.

View Article and Find Full Text PDF

3D printing technology is revolutionizing pharmaceuticals, offering tailored solutions for solid dosage forms. This innovation is particularly significant for conditions like Chagas disease, which require weight-dependent treatments. In this work, a formulation of benznidazole (BNZ), the primary treatment for this infection, was developed to be utilized with the Melting Solidification Printing Process (MESO-PP) 3D printing technique.

View Article and Find Full Text PDF

Increasing the solubility of drugs is a recurrent objective of pharmaceutical research, and one of the most widespread strategies today is the formulation of nanocrystals (NCs). Beyond the many advantages of formulating NCs, their incorporation into solid dosage forms remains a challenge that limits their use. In this work, we set out to load Atorvastatin NCs (ATV-NCs) in a delivery device by combining 3D scaffolds with an "in situ" loading method such as freeze-drying.

View Article and Find Full Text PDF

Anaerobic adhesives (AAs) cure at room temperature in oxygen-deprived spaces between metal substrates. The curing process is significantly influenced by the type of metal ions present. This study investigates the curing kinetics of a high-strength AA on iron and copper substrates using differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (BC) were incorporated as reinforcement at 6% and 12% ratios, owing to their exceptional resistance to abrasive wear and high hardness.

View Article and Find Full Text PDF

Hybridizing carbon-fiber-reinforced polymers with natural fibers could be a solution to prevent delamination and improve the out-of-plane properties of laminated composites. Delamination is one of the initial damage modes in composite laminates, attributed to relatively poor interlaminar mechanical properties, e.g.

View Article and Find Full Text PDF

Atorvastatin (ATV) is a first-line drug for the treatment of hyperlipidemia. This drug presents biopharmaceutical problems, partly due to its low solubility and dissolution rate. In this work, nanocrystals of ATV stabilized with Tween 80® were designed by wet milling.

View Article and Find Full Text PDF

The challenge of low water solubility in pharmaceutical science profoundly impacts drug absorption and therapeutic effectiveness. Nanocrystals (NC), consisting of drug molecules and stabilizing agents, offer a promising solution to enhance solubility and control release rates. In the pharmaceutical industry, top-down techniques are favored for their flexibility and cost-effectiveness.

View Article and Find Full Text PDF

Objective And Significance: This research aims to design and develop a pilot plant-type pharmaceutical reactor with a strong focus on its volumetric capacity and heat transfer capabilities. The primary goal is to replicate design and control strategies at the laboratory or pilot scale to analyze and produce generic semisolid formulations.

Methods: Computational fluid dynamics and heat transfer modeling, utilizing the finite volume method, were employed to determine the reactor's performance and particle trajectory during the mixing and stirring.

View Article and Find Full Text PDF

Background And Objectives: Allogeneic stem cell transplantation (Allo-SCT) in elderly patients is a growing practice. We aimed to determine the graft-versus-host disease (GVHD) relapse-free survival (GRFS) in patients ≥65 years who underwent Allo-SCT in two countries from Latin America.

Patients And Methods: We performed a retrospective analysis of patients ≥65 years who underwent Allo-SCT in Argentina and Brazil from 2007 to 2019.

View Article and Find Full Text PDF

Domperidone (DOM) is a drug commonly used to treat nausea and vomiting, as well as gastrointestinal disorders. However, its low solubility and extensive metabolism pose significant administration challenges. In this study, we aimed to improve DOM solubility and avoid its metabolism by developing nanocrystals (NC) of DOM through a 3D printing technology-melting solidification printing process (MESO-PP)-to be delivered via a solid dosage form (SDF) that can be administered sublingually.

View Article and Find Full Text PDF

Niclosamide (NICLO) is a recognized antiparasitic drug being repositioned for . The present work aimed to formulate NICLO nanocrystals (NICLO-NCRs) to produce a higher dissolution rate of the active ingredient and to incorporate these nanosystems into a floating solid dosage form to release them into the stomach slowly. For this purpose, NICLO-NCRs were produced by wet-milling and included in a floating Gelucire l3D printed tablet by semi-solid extrusion, applying the Melting solidification printing process (MESO-PP) methodology.

View Article and Find Full Text PDF

Graphene-based nanomaterials (GBN) can provide attractive properties to photocurable resins used in 3D printing technologies such as improved mechanical properties, electrical and thermal conductivity, and biological capabilities. However, the presence of GBN can affect the printing process (e.g.

View Article and Find Full Text PDF

The use of 3D printing for the production of systems intended for oral delivery of diet supplements in the veterinary pharmacy constitutes an attractive technology that has remained unexplored. In this sense, this work studies the design and 3D printing of capsular devices that allow the modified release of urea, which is frequently used as a source of non-protein nitrogen in ruminants, but highly toxic if fast ingested. The devices were printed with combinations of polylactic acid (PLA, water-insoluble) and polyvinyl alcohol (PVA, water-soluble) in order to modulate the urea release through the different parts.

View Article and Find Full Text PDF

Purpose: 3D printing (3DP) makes it possible to obtain systems that are not achievable with current conventional methods, one of them, sustained release floating systems. Floating systems using ricobendazole (RBZ) as a model drug and a combination of polymers were designed and obtained by melt solidification printing technique (MESO-PP).

Methods: Four different MESO-PP inks were formulated based on combinations of the polymers Gelucire 43/01 and Gelucire 50/13 in different ratios.

View Article and Find Full Text PDF

At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of producing a new gastro-retentive dosage form loaded with ricobendazole. To obtain the drug delivery system (DDS), the ionotropic gelation of alginate in combination with a divalent cation during the extrusion was exploited.

View Article and Find Full Text PDF

This is the first report on the inclusion of nanocrystals (NCs) within 3D-printed oral solid dosage forms -3D-printed tablets or printlets- produced by the Melting Solidification Printing Process (MESO-PP) 3D printing technique. This method allowed the incorporation of albendazole (ABZ) nanocrystals in a concentration of up to 50% w/w, something not achieved in conventional tablets. An ink of PEG 1500/propylenegycol was used as a carrier and no physicochemical interactions or crystallinity modifications were observed due to the inclusion of ABZ-NCs into the ink, as demonstrated by TGA, DSC, XRD and FT-IR.

View Article and Find Full Text PDF

The incorporation of well-dispersed graphene (G) powder to polymethyl methacrylate (PMMA) bone cement has been demonstrated as a promising solution to improving its mechanical performance. However, two crucial aspects limit the effectiveness of G as a reinforcing agent: (1) the poor dispersion and (2) the lack of strong interfacial bonds between G and the matrix of the bone cement. This work reports a successful functionalisation route to promote the homogenous dispersion of G via silanisation using 3-methacryloxypropyltrimethoxy silane (MPS).

View Article and Find Full Text PDF

Bone possesses an inherent capacity to fix itself. However, when a defect larger than a critical size appears, external solutions must be applied. Traditionally, an autograft has been the most used solution in these situations.

View Article and Find Full Text PDF

This paper describes a melting solidification printing process (MESO-PP) capable of obtaining printed oral solid dosage forms in a safe, versatile, and robust manner avoiding the use of solvents and high temperatures. MESO-PP and Gelucire® 50/13 (fatty polyethylene glycol esters) as ink can be used to obtain a floating sustained-release system with the aim of improving the dissolution and absorption of drugs, such as ricobendazole (RBZ), which have a low and erratic bioavailability. Gelucire 50/13 can be considered a good material to formulate inks using MESO-PP.

View Article and Find Full Text PDF
Article Synopsis
  • Pseudoexfoliation Syndrome (PEX) is a genetic disorder that leads to the accumulation of elastin fibers in the eye and other tissues, and is a common cause of secondary glaucoma.
  • A study compared hearing levels between patients with and without PEX, involving 48 individuals aged 59 to 75, focusing on their audiometric results.
  • The findings revealed that 82.7% of patients with PEX experienced hearing loss, significantly higher than the 56.8% in the control group, indicating a possible link between PEX and increased hearing impairment.
View Article and Find Full Text PDF

The authors report the use of an encircling scleral buckling procedure for the management of severe hypotony secondary to traumatic annular ciliochoroidal detachment (CCD) with cyclodialysis cleft. Medical records of patients with severe ocular hypotony were retrospectively reviewed. Four patients with traumatic annular CCD with cyclodialysis cleft were identified.

View Article and Find Full Text PDF