Publications by authors named "Juan Ravell"

Article Synopsis
  • Researchers aim to extend human healthspans by keeping cells functional and non-senescent, as aging appears to be genetically regulated in model organisms.
  • A new human genetic disease linked to GIMAP5 deficiency leads to cell senescence, liver and immune dysfunction, and early death, highlighting GIMAP5's importance in longevity.
  • GIMAP5 helps regulate the accumulation of harmful long-chain ceramides by interacting with a protein kinase (CK2), and targeting CK2 can restore function in GIMAP5-deficient cells, showing its role in maintaining immune health and longevity.
View Article and Find Full Text PDF

Background: XMEN (X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV), and N-linked glycosylation defect) disease results from loss-of-function mutations in MAGT1, a protein that serves as a magnesium transporter and a subunit of the oligosaccharyltransferase (OST) complex. MAGT1 deficiency disrupts N-linked glycosylation, a critical regulator of immune function. XMEN results in recurrent EBV infections and a propensity for EBV-driven malignancies.

View Article and Find Full Text PDF

X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus (EBV) infection and N-linked glycosylation defect (XMEN) disease is an inborn error of immunity caused by loss-of-function mutations in the magnesium transporter 1 (MAGT1) gene. The original studies of XMEN patients focused on impaired magnesium regulation, leading to decreased EBV-cytotoxicity and the loss of surface expression of the activating receptor "natural killer group 2D" (NKG2D) on CD8 T cells and NK cells. In vitro studies showed that supraphysiological supplementation of magnesium rescued these defects.

View Article and Find Full Text PDF

XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter.

View Article and Find Full Text PDF

Background Aim: X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect' (XMEN) disease is caused by mutations in the magnesium transporter 1 (MAGT1) gene. Loss of MAGT1 function results in a glycosylation defect that abrogates expression of key immune proteins such as the NKG2D receptor on CD8 T and NK cells, which is critical for the recognition and killing of virus-infected and transformed cells, a biomarker for MAGT1 function. Patients with XMEN disease frequently have increased susceptibility to EBV infections and EBV-associated B cell malignancies, for which no specific treatment options are currently available.

View Article and Find Full Text PDF

"X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia" (XMEN) disease is an inborn error of glycosylation and immunity caused by loss of function mutations in the magnesium transporter 1 (MAGT1) gene. It is a multisystem disease that strongly affects certain immune cells. MAGT1 is now confirmed as a non-catalytic subunit of the oligosaccharyltransferase complex and facilitates Asparagine (N)-linked glycosylation of specific substrates, making XMEN a congenital disorder of glycosylation manifesting as a combined immune deficiency.

View Article and Find Full Text PDF

X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαβ+ T cells (αβDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor.

View Article and Find Full Text PDF

Magnesium transporter 1 (MAGT1) critically mediates magnesium homeostasis in eukaryotes and is highly-conserved across different evolutionary branches. In humans, loss-of-function mutations in the gene cause X-linked magnesium deficiency with Epstein-Barr virus (EBV) infection and neoplasia (XMEN), a disease that has a broad range of clinical and immunological consequences. We have previously shown that EBV susceptibility in XMEN is associated with defective expression of the antiviral natural-killer group 2 member D (NKG2D) protein and abnormal Mg transport.

View Article and Find Full Text PDF

Mg is required at micromolar concentrations as a cofactor for ATP, enzymatic reactions, and other biological processes. We show that decreased extracellular Mg reduced intracellular Mg levels and impaired the Ca flux, activation marker up-regulation, and proliferation after T cell receptor (TCR) stimulation. Reduced Mg specifically impairs TCR signal transduction by IL-2-inducible T cell kinase (ITK) due to a requirement for a regulatory Mg in the catalytic pocket of ITK.

View Article and Find Full Text PDF

Background: Epstein-Barr virus (EBV) causes endemic Burkitt lymphoma (eBL). EBV control was improved by magnesium (Mg) supplementation in XMEN, an X-linked genetic disease associated with Mg deficiency, high circulating EBV levels (viral loads), and EBV-related lymphomas. We, therefore, investigated the relationship between Mg levels and EBV levels and eBL in Uganda.

View Article and Find Full Text PDF

Purpose: Combined immunodeficiency (CID) presents a unique challenge to clinicians. Two patients presented with the prior clinical diagnosis of common variable immunodeficiency (CVID) disorder marked by an early age of presentation, opportunistic infections, and persistent lymphopenia. Due to the presence of atypical clinical features, next generation sequencing was applied documenting RAG deficiency in both patients.

View Article and Find Full Text PDF

Purpose Of Review: To describe the role of the magnesium transporter 1 (MAGT1) in the pathogenesis of 'X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia' (XMEN) disease and its clinical implications.

Recent Findings: The magnesium transporter protein MAGT1 participates in the intracellular magnesium ion (Mg) homeostasis and facilitates a transient Mg influx induced by the activation of the T-cell receptor. Loss-of-function mutations in MAGT1 cause an immunodeficiency named 'XMEN syndrome', characterized by CD4 lymphopenia, chronic EBV infection, and EBV-related lymphoproliferative disorders.

View Article and Find Full Text PDF

We report on a 44-year-old woman affected by dermatopolymyositis resistant to conventional therapies who experienced long-term clinical improvement and remission after treatment with intravenous polyvalent immunoglobulin in a weekly schedule followed by rituximab therapy.

View Article and Find Full Text PDF