We report the synthesis of the antimicrobial cyclodepsipeptides marformycin A () and marformycin D () using a solid-phase approach. A scalable solution-phase synthesis of the γ-hydroxypiperazic acid subunit in , starting from -hydroxyproline, is also described. Structural analysis of and its Leu- congener demonstrates conformational differences that may underlie their divergent antimicrobial activities.
View Article and Find Full Text PDFN-alkylated glycine residues are the main constituent of peptoids and peptoid-peptide hybrids that are employed across the biomedical and materials sciences. While the impact of backbone N-alkylation on peptide conformation has been extensively studied, less is known about the effect of N-amination on the secondary structure propensity of glycine. Here, we describe a convenient protocol for the incorporation of N-aminoglycine into host peptides on solid support.
View Article and Find Full Text PDFThe growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.
View Article and Find Full Text PDFThe aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer's disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant β-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of β-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-β module specific to the AD tau fold.
View Article and Find Full Text PDFPseudouridimycin (PUM) is a microbially produced C-nucleoside dipeptide that selectively targets the nucleotide addition site of bacterial RNA polymerase (RNAP) and that has a lower rate of spontaneous resistance emergence relative to current drugs that target RNAP. Despite its promising biological profile, PUM undergoes relatively rapid decomposition in buffered aqueous solutions. Here, we describe the synthesis, RNAP-inhibitory activity, and antibacterial activity of chemically stabilized analogues of PUM.
View Article and Find Full Text PDFTauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology.
View Article and Find Full Text PDFThe identification of unnatural residues that stabilize polyproline type 2 (PPII) folds can aid in the design of peptidomimetics targeting PPII-binding domains. Here, we examine the impact of peptide backbone N-amination on PPII helix stability and find -aminoglycine (aGly) to be an effective PPII promoter. Further derivatization of an aGly-containing peptide affords '-alkylated analogues with increased helical propensity.
View Article and Find Full Text PDFWe report the total synthesis and configurational assignment of pargamicin A, a highly oxidized nonribosomal peptide that potently inhibits the growth of drug-resistant bacteria. Our synthetic approach relies on late-stage piperazine ring formation and careful selection of condensation reagents to assemble the densely substituted hexapeptide backbone. This work enables the synthesis of pargamicin congeners for the development of structure-activity relationships and informs strategies for accessing other sterically congested piperazic acid-containing natural products.
View Article and Find Full Text PDFActivation of the IRE-1/XBP-1s pathway supports tumor progression. Here, we report a novel prodrug, TC-D-F07, in which a thiol-reactive dinitrobenzenesulfonyl (Dns) cage was installed onto the C8 hydroxyl of the covalent IRE-1 inhibitor D-F07. The electron-withdrawing Dns group in TC-D-F07 stabilizes the neighboring 1,3-dioxane acetal, allowing for stimulus-mediated control of its inhibitory activity.
View Article and Find Full Text PDFCysteine-containing -amino peptides undergo chemoselective reactions with haloaldehydes to afford ethylene-bridged cyclic peptides. This bis-alkylation strategy provides macrocycles harboring a novel covalent H-bond surrogate. Mimicry of a native sidechain-to-backbone () H-bond is demonstrated in the context of a model loop-helix peptide.
View Article and Find Full Text PDFChem Commun (Camb)
February 2022
Correction for 'Total synthesis and chemical stability of pseudouridimycin' by Christopher F. Cain , , 2022, DOI: 10.1039/d1cc07059b.
View Article and Find Full Text PDFWe report the chemical synthesis of pseudouridimycin (1), an antimicrobial natural product that potently and selectively inhibits bacterial RNA polymerase. Chemical stability studies revealed intramolecular hydroxamate bond scission to be a major decomposition pathway for 1 in aqueous buffer. Replacement of the hydroxamate bond with a tertiary amide, as in 16, afforded a conformational isostere resistant to degradation.
View Article and Find Full Text PDFThe spread of neurofibrillary tangles composed of tau protein aggregates is a hallmark of Alzheimer's and related neurodegenerative diseases. Early oligomerization of tau involves conformational reorganization into parallel β-sheet structures and supramolecular assembly into toxic fibrils. Despite the need for selective inhibitors of tau propagation, β-rich protein assemblies are inherently difficult to target with small molecules.
View Article and Find Full Text PDFThe chemical modification of peptides is a promising approach for the design of protein-protein interaction inhibitors and peptide-based drug candidates. Among several peptidomimetic strategies, substitution of the amide backbone maintains side-chain functionality that may be important for engagement of biological targets. Backbone amide substitution has been largely limited to N-alkylation, which can promote cis amide geometry and disrupt important H-bonding interactions.
View Article and Find Full Text PDFThe IRE-1 kinase/RNase splices the mRNA of the XBP-1 gene, resulting in the spliced XBP-1 (XBP-1s) mRNA that encodes the functional XBP-1s transcription factor that is critically important for the growth and survival of B-cell leukemia, lymphoma, and multiple myeloma (MM). Several inhibitors targeting the expression of XBP-1s have been reported; however, the cytotoxicity exerted by each inhibitor against cancer cells is highly variable. To design better therapeutic strategies for B-cell cancer, we systematically compared the ability of these compounds to inhibit the RNase activity of IRE-1 and to suppress the expression of XBP-1s in mouse and human MM cell lines.
View Article and Find Full Text PDFWe report the parallel synthesis of gramicidin S derivatives featuring backbone N-amino substituents. Analogues were prepared by incorporation of N-amino dipeptide subunits on solid support. Nine backbone-aminated macrocycles were evaluated for growth inhibitory activity against ESKAPE pathogens and hemolytic activity against human red blood cells.
View Article and Find Full Text PDFPeptide backbone amide substitution can dramatically alter the conformational and physiochemical properties of native sequences. Although uncommon relative to N-alkyl substituents, peptides harboring main-chain N-hydroxy groups exhibit unique conformational preferences and biological activities. Here, we describe a versatile method to prepare N-hydroxy peptide on solid support and evaluate the impact of backbone N-hydroxylation on secondary structure stability.
View Article and Find Full Text PDFThe aggregation of amyloids into toxic oligomers is believed to be a key pathogenic event in the onset of Alzheimer's disease. Peptidomimetic modulators capable of destabilizing the propagation of an extended network of β-sheet fibrils represent a potential intervention strategy. Modifications to amyloid-beta (Aβ) peptides derived from the core domain have afforded inhibitors capable of both antagonizing aggregation and reducing amyloid toxicity.
View Article and Find Full Text PDFPeptides featuring backbone N-amino substituents exhibit unique conformational properties owing to additional electrostatic, hydrogen-bonding, and steric interactions. Here, we describe the synthesis and conformational analysis of three δ-azaproline derivatives as potential proline surrogates. Our studies demonstrate stereoelectronic tuning of heterocyclic ring pucker, / amide propensity, and amide isomerization barriers within a series of oxidation state variants.
View Article and Find Full Text PDFA six-step synthesis of orthogonally protected ()-ε-oxapipecolic acid is described, starting from a commercially available glutamate diester. The approach features CPBA-mediated amine oxidation and an intramolecular Mitsunobu reaction to form the tetrahydrooxazine ring. The enantiopure building block was employed in the synthesis of a short model peptide to determine the amide rotamer preference -terminal to the cyclic residue.
View Article and Find Full Text PDFActivation of the IRE-1/XBP-1 pathway has been linked to many human diseases. We report a novel fluorescent tricyclic chromenone inhibitor, D-F07, in which we incorporated a 9-methoxy group onto the chromenone core to enhance its potency and masked the aldehyde to achieve long-term efficacy. Protection of the aldehyde as a 1,3-dioxane acetal led to strong fluorescence emitted by the coumarin chromophore, enabling D-F07 to be tracked inside the cell.
View Article and Find Full Text PDFAcute graft- vs. -host disease (GVHD) is an important cause of morbidity and death after allogeneic hematopoietic cell transplantation (HCT). We identify a new approach to prevent GVHD that impairs monocyte-derived dendritic cell (moDC) alloactivation of T cells, yet preserves graft- vs.
View Article and Find Full Text PDFThe first chemical synthesis of L-156,373 (1), a potent oxytocin receptor antagonist isolated from Streptomyces silvensis, is reported. Assembly of the unusual d-Piz-l-Piz dipeptide subunit was achieved through a sequential electrophilic amination-acylation-deprotection strategy followed by late-stage Piz ring formation. Synthesis and incorporation of a novel N-hydroxy-l-isoleucine building block is also described.
View Article and Find Full Text PDF