Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing.
View Article and Find Full Text PDFSynaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. To interrogate synapse function in a systematic manner, we have established an automated high-throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular value decomposition.
View Article and Find Full Text PDFNeurogenin 2 encodes a neural-specific transcription factor (NGN2) able to drive neuronal fate on somatic and stem cells. NGN2 is expressed in neural progenitors within the developing central and peripheral nervous systems. Overexpression of NGN2 in human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells has been shown to efficiently trigger conversion to neurons.
View Article and Find Full Text PDFAstrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells.
View Article and Find Full Text PDFThe mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino acid-starved cells have reported that glutamine addition can either stimulate or repress mTORC1 activity, depending on the particular experimental system that was used.
View Article and Find Full Text PDFSynchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons.
View Article and Find Full Text PDFCholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales.
View Article and Find Full Text PDFNa⁺-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early long-term potentiation (E-LTP) and late long-term potentiation (L-LTP).
View Article and Find Full Text PDFThere are many cellular and synaptic mechanisms of plasticity in the vertebrate cortex. How the patterns of suprathreshold spiking activity in a population of neurons change because of this plasticity, however, has hardly been subjected to experimental studies. Here, we measured how evoked patterns of suprathreshold spiking activity in a cortical network were modified by cortical plasticity with single-cell and single-spike resolution.
View Article and Find Full Text PDFThe performance of neural codes to represent attributes of sensory signals has been evaluated in the vertebrate peripheral and central nervous system. Here, we determine how information signaled by populations of neurons is modified by plasticity. Suprathreshold neuronal responses from a large number of neurons were recorded in the juvenile mouse barrel cortex using dithered random-access scanning.
View Article and Find Full Text PDFThe sodium-dependent glutamate transporter, glutamate transporter subtype 1 (GLT-1) is one of the main glutamate transporters in the brain. GLT-1 contains a COOH-terminal sequence similar to one in an isoform of Slo1 K(+) channel protein previously shown to bind MAGI-1 (membrane-associated guanylate kinase with inverted orientation protein-1). MAGI-1 is a scaffold protein which allows the formation of complexes between certain transmembrane proteins, actin-binding proteins, and other regulatory proteins.
View Article and Find Full Text PDFRegulation of glutamate transporters often accompanies glutamatergic synaptic plasticity. We investigated the mechanisms responsible for the increase in glutamate uptake associated with increased glutamate release at the Aplysia sensorimotor synapse during long-term sensitization (LTS) and long-term facilitation. An increase in the V(max) of transport, produced by LTS training, suggested that the increased glutamate uptake was due to an increase in the number of transporters in the membrane.
View Article and Find Full Text PDFRegulation of glutamate reuptake occurs along with several forms of synaptic plasticity. These associations led to the hypothesis that regulation of glutamate uptake is a general component of plasticity at glutamatergic synapses. We tested this hypothesis by determining whether glutamate uptake is regulated during both the early phases (E-LTP) and late phases (L-LTP) of long-term potentiation (LTP).
View Article and Find Full Text PDF