Publications by authors named "Juan Pariasca Tanaka"

Unlabelled: The rice panicle is the principal organ to influence productivity and traits affecting panicle architecture determine sink size and yield potential. Improving panicle architecture may be effective in increasing yield under low-input conditions, but which traits are of importance under such conditions and how they are genetically controlled is not well understood. Using recombinant inbred lines (RILs) derived from a cross between a modern variety IR64 and a low fertility tolerant accession DJ123, quantitative trait locus (QTL) mapping was conducted under high soil fertility in Japan and low fertility in Madagascar.

View Article and Find Full Text PDF

The rice root system consists of two types of lateral roots, indeterminate larger L-types capable of further branching, and determinate, short, unbranched S-types. L-type laterals correspond to the typical lateral roots of cereals whereas S-type laterals are unique to rice. Both types contribute to nutrient and water uptake and genotypic variation for density and length of these laterals could be exploited in rice improvement to enhance adaptations to nutrient and water-limited environments.

View Article and Find Full Text PDF

Upland rice production is limited by the low phosphorus (P) availability of many highly weathered tropical soils and P deficiency is likely to become increasingly limiting in future drier climates because P mobility decreases sharply with soil moisture. Good seedling root development will be crucial to cope with the combined effects of low P and water availability. Upland rice genebank accession DJ123 was used as a donor for P efficiency and root vigor traits in a cross with inefficient local variety Nerica4 and a set of backcross lines were used to characterize the seedling stage response of upland rice to low P availability and to identify associated QTL in field trials in Japan and Madagascar.

View Article and Find Full Text PDF

Phosphorus (P) is an essential plant nutrient. Most rice growing lands lack adequate P, requiring multiple P fertiliser applications to obtain expected yields. However, P fertiliser is environmentally damaging, and already unaffordable to the marginal farmers.

View Article and Find Full Text PDF

A genomic prediction model successfully predicted grain Zn concentrations in 3000 gene bank accessions and this was verified experimentally with selected potential donors having high on-farm grain-Zn in Madagascar. Increasing zinc (Zn) concentrations in edible parts of food crops, an approach termed Zn-biofortification, is a global breeding objective to alleviate micro-nutrient malnutrition. In particular, infants in countries like Madagascar are at risk of Zn deficiency because their dominant food source, rice, contains insufficient Zn.

View Article and Find Full Text PDF

Rice (Oryza sativa L.) is a staple food of Madagascar, where per capita rice consumption is among the highest worldwide. Rice in Madagascar is mainly grown on smallholder farms on soils with low fertility and in the absence of external inputs such as mineral fertilizers.

View Article and Find Full Text PDF

Background And Aims: Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P).

View Article and Find Full Text PDF

Despite phenotyping the training set under unfavorable conditions on smallholder farms in Madagascar, we were able to successfully apply genomic prediction to select donors among gene bank accessions. Poor soil fertility and low fertilizer application rates are main reasons for the large yield gap observed for rice produced in sub-Saharan Africa. Traditional varieties that are preserved in gene banks were shown to possess traits and alleles that would improve the performance of modern variety under such low-input conditions.

View Article and Find Full Text PDF

Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice ( L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance.

View Article and Find Full Text PDF

Seed phosphorus (P) reserves are essential for seedling development; however, we hypothesise that the quantity of P in seeds will lose importance in cultivars that rapidly acquire it via their roots. Our objective in this study was therefore to investigate the onset of seedling P uptake in rice (Oryza sativa). This was addressed through 33P-labelled supply and through measuring P depletion in combination with the detection of P transporter activity in the root tissue of three rice cultivars during early development.

View Article and Find Full Text PDF

Elucidation of the genetic control of rice seedling vigour is now paramount with global shifts towards direct seeding of rice and the consequent demand for early vigour traits in breeding programmes. In a genome-wide association study using an indica-predominant diversity panel, we identified quantitative trait loci (QTLs) for root length and root number in rice seedlings. Among the identified QTLs, one QTL for lateral root number on chromosome 11, qTIPS-11, was associated with a 32.

View Article and Find Full Text PDF

In rice, genotypic differences in phosphorus (P) uptake from P-deficient soils are generally proportional to differences in root biomass or surface area (RSA). It is not known to what extent genotypic variation for root efficiency (RE) exists or contributes to P uptake. We evaluated 196 rice accessions under P deficiency and detected wide variation for root biomass which was significantly associated with plant performance.

View Article and Find Full Text PDF

Depletion of non-renewable rock phosphate reserves and phosphorus (P) fertilizer price increases has renewed interest in breeding P-efficient varieties. Internal P utilization efficiency (PUE) is of prime interest because there has been no progress to date in breeding for high PUE. We characterized the genotypic variation for PUE present within the rice gene pool by using a hydroponic system that assured equal plant P uptake, followed by mapping of loci controlling PUE via Genome-Wide Association Studies (GWAS).

View Article and Find Full Text PDF

We have developed allele-specific markers for molecular breeding to transfer the PSTOL1 gene from Kasalath to African mega-varieties, including NERICAs, to improve their tolerance to P-deficient soil. The deficiency of phosphorus (P) in soil is a major problem in Sub-Saharan Africa due to general nutrient depletion and the presence of P-fixing soils. Developing rice cultivars with enhanced P efficiency would, therefore, represent a sustainable strategy to improve the livelihood of resource-poor farmers.

View Article and Find Full Text PDF

As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago.

View Article and Find Full Text PDF

Plants are routinely subjected to multiple environmental stresses that constrain growth. Zinc (Zn) deficiency and high bicarbonate are two examples that co-occur in many soils used for rice production. Here, the utility of metabolomics in diagnosing the effect of each stress alone and in combination on rice root function is demonstrated, with potential stress tolerance indicators identified through the use of contrasting genotypes.

View Article and Find Full Text PDF

Leaf ascorbic acid (ASA) level is thought to be an important trait conferring stress tolerance in plants, but definite evidence regarding its effectiveness in the breeding of stress tolerant crops is lacking. Therefore, the stress response of a rice TOS17 insertion mutant (ND6172) for a GDP-D-mannose-3',5'-epimerase gene, which is involved in ASA biosynthesis, was tested. Two fumigation experiments were conducted, in which rice plants (Oryza sativa L.

View Article and Find Full Text PDF

It has been hypothesised that enhanced organic acid release from the roots of zinc-efficient rice (Oryza sativa L.) genotypes plays a strong role in plant tolerance to both bicarbonate excess and Zn deficiency. To address several uncertainties in the literature surrounding the tolerance of rice to bicarbonate, we initially assessed the tolerance of six rice genotypes to bicarbonate stress under field conditions and in solution culture.

View Article and Find Full Text PDF

Despite the attention internal phosphorus utilization efficiency (PUE) of crops has received in the literature, little progress in breeding crop cultivars with high PUE has been made. Surprisingly few studies have specifically investigated PUE; instead, genotypic variation for PUE has been investigated in studies that concurrently assess phosphorus acquisition efficiency (PAE). We hypothesized that genotypic differences in PAE confound PUE rankings because genotypes with higher PAE suffer a lower degree of P stress, resulting in lower PUE.

View Article and Find Full Text PDF

High surface ozone concentration is increasingly being recognized as a factor that negatively affects crop yields in Asia. However, little progress has been made in developing ozone-tolerant genotypes of rice-Asia's major staple crop. This study aimed to identify possible tolerance mechanisms by characterizing two quantitative trait loci (QTLs) that were previously shown to influence visible leaf symptoms under ozone exposure (120 nl l(-1), 7 h d(-1), 13 d).

View Article and Find Full Text PDF

*Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels.

View Article and Find Full Text PDF

Background And Aims: Nitrification is an important process in soil--plant systems for providing plant-available nitrate (NO(3) (-)). However, NO(3) (-) is less stable in soils compared with ammonium (NH(4) (+)) and is more easily lost through leaching, runoff or denitrification. This study tested whether biological nitrification inhibition (BNI) activity is present in the root exudates of rice (Oryza sativa) and also the extent of variation between different genotypes.

View Article and Find Full Text PDF

The phosphorus uptake 1 (Pup1) locus was identified as a major quantitative trait locus (QTL) for tolerance of phosphorus deficiency in rice. Near-isogenic lines with the Pup1 region from tolerant donor parent Kasalath typically show threefold higher phosphorus uptake and grain yield in phosphorus-deficient field trials than the intolerant parent Nipponbare. In this study, we report the fine mapping of the Pup1 locus to the long arm of chromosome 12 (15.

View Article and Find Full Text PDF