A fluorescence antibody microarray has been developed for the determination of relevant cardiovascular disease biomarkers for the analysis of human plasma samples. Recording characteristic protein molecular fingerprints to assess individual's states of health could allow diagnosis to go beyond the simple identification of the disease, providing information on its stage or prognosis. Precisely, cardiovascular diseases (CVDs) are complex disorders which involve different degenerative processes encompassing a collection of biomarkers related to disease progression or stage.
View Article and Find Full Text PDFAn immunochemical strategy to detect and quantify AIP-IV, the quorum sensing (QS) signaling molecule produced by type IV, is reported here for the first time. Theoretical calculations and molecular modeling studies have assisted on the design and synthesis of a suitable peptide hapten (AIPIVS), allowing to obtain high avidity and specific antibodies toward this peptide despite its low molecular weight. The ELISA developed achieves an IC value of 2.
View Article and Find Full Text PDFA proof of concept of the electronic detection of two anabolic steroids, stanozolol (Stz) and methylboldenone (MB), was carried out using two specific antibodies and arrays of carbon nanotube field-effect transistors (CNTFETs). Antibodies specific for Stz and MB were prepared and immobilized on the carbon nanotubes (CNTs) using two different approaches: direct noncovalent bonding of antibodies to the devices and bonding the antibodies covalently to a polymer previously attached to the CNTFETs. The results indicated that CNTFETs bonded to specific antibodies covalently or noncovalently are able to detect the presence of steroids.
View Article and Find Full Text PDF