Biochem Biophys Res Commun
November 2018
Associations between the cortical cytoskeleton and the components of the plasma membrane are no longer considered to be merely of structural and mechanical nature but are nowadays recognized as dynamic interactions that modulate a plethora of cellular responses. Reorganization of actin filaments upon diverse stimuli - among which is the rise in cytosolic Ca - is involved in cell motility and adhesion, phagocytosis, cytokinesis, and secretion. Actin dynamics also participates in the regulation of ion transport across the membranes where it not only plays a key role in the delivery and stabilization of channels and transporters in the plasma membrane but also in the regulation of their activity.
View Article and Find Full Text PDFWe have previously shown that purified actin can directly bind to human plasma membrane Ca ATPase 4b (hPMCA4b) and exert a dual modulation on its Ca-ATPase activity: F-actin inhibits PMCA while short actin oligomers may contribute to PMCA activation. These studies had to be performed with purified proteins given the nature of the biophysical and biochemical approaches used. To assess whether a functional interaction between the PMCAs and the cortical cytoskeleton is of physiological relevance, we characterized this phenomenon in the context of a living cell by monitoring in real-time the changes in the cytosolic calcium levels ([Ca]).
View Article and Find Full Text PDFMedicina (B Aires)
July 2008
In spite of our profession, when we cook we do not think too much about the complex processes that take place in culinary operations from the chemical point of view. Our human nature makes us desire not only a meal that nourishes us, but also surprises our senses and satisfies us spiritually. In order to introduce ourselves in the complexity of food, it is necessary to understand the difference between taste and flavor, and to relate them to food as an outcome of a diverse combination of biomolecules.
View Article and Find Full Text PDF