Large DNA molecules (>20 kb) are difficult analytes prone to breakage during serial manipulations and cannot be 'rescued' as full-length amplicons. Accordingly, to present, modify and analyze arrays of large, single DNA molecules, we created an easily realizable approach offering gentle confinement conditions or immobilization via spermidine condensation for controlled delivery of reagents that support live imaging by epifluorescence microscopy termed 'Gel-Stacks.' Molecules are locally confined between two hydrogel surfaces without covalent tethering to support time-lapse imaging and multistep workflows that accommodate large DNA molecules.
View Article and Find Full Text PDFWhile Bacterial Artificial Chromosomes libraries were once a key resource for the genomic community, they have been obviated, for sequencing purposes, by long-read technologies. Such libraries may now serve as a valuable resource for manipulating and assembling large genomic constructs. To enhance accessibility and comparison, we have developed a BAC restriction map database.
View Article and Find Full Text PDFArbovirus infections are frequent causes of acute febrile illness (AFI) in tropical countries. We conducted health facility-based AFI surveillance at four sites in Colombia (Cucuta, Cali, Villavicencio, Leticia) during 2019-2022. Demographic, clinical and risk factor data were collected from persons with AFI that consented to participate in the study ( = 2,967).
View Article and Find Full Text PDFLiquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets.
View Article and Find Full Text PDF