Publications by authors named "Juan Pablo F C Rossi"

Our research aimed to elucidate the mechanism by which aurintricarboxylic acid (ATA) inhibits plasma membrane Ca-ATPase (PMCA), a crucial enzyme responsible for calcium transport. Given the pivotal role of PMCA in cellular calcium homeostasis, understanding how it is inhibited by ATA holds significant implications for potentially regulating physiopathological cellular processes in which this pump is involved. Our experimental findings revealed that ATA employs multiple modes of action to inhibit PMCA activity, which are influenced by ATP but also by the presence of calcium and magnesium ions.

View Article and Find Full Text PDF

Plasma membrane Ca2+-ATPase (PMCA) transports Ca2+ by a reaction cycle including phosphorylated intermediates. Calmodulin binding to the C-terminal tail disrupts autoinhibitory interactions, activating the pump. To assess the conformational changes during the reaction cycle, we studied the structure of different PMCA states using a fluorescent probe, hydrophobic photolabeling, controlled proteolysis and Ca2+-ATPase activity.

View Article and Find Full Text PDF

The plasma membrane Ca‑ATPase (PMCA) belongs to the family of P-type ATPases, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. The crystal structure of PMCA is currently lacking. Its abundance is approximately 0.

View Article and Find Full Text PDF

Aluminum (Al) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets. The aim of this work was to study the molecular inhibitory mechanism of Al on Ca-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively).

View Article and Find Full Text PDF

In the recent years, the toxicity of certain divalent cations has been associated with the alteration of intracellular Ca homeostasis. Among other mechanisms, these cations may affect the functionality of certain Ca-binding proteins and/or Ca pumps. The plasma membrane calcium pump (PMCA) maintains Ca homeostasis in eukaryotic cells by mediating the efflux of this cation in a process coupled to ATP hydrolysis.

View Article and Find Full Text PDF

Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol.

View Article and Find Full Text PDF

The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio.

View Article and Find Full Text PDF

The aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca(2+) with high apparent affinity.

View Article and Find Full Text PDF

As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range.

View Article and Find Full Text PDF

The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA).

View Article and Find Full Text PDF

In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium.

View Article and Find Full Text PDF

Although membrane proteins constitute more than 20% of the total proteins, the structures of only a few are known in detail. An important group of integral membrane proteins are ion-transporting ATPases of the P-type family, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. There are several crystal structures of the sarcoplasmic reticulum Ca(2+) pump (SERCA) revealing different conformations, and recently, crystal structures of the H(+)-ATPase and the Na(+)/K(+)-ATPase were reported as well.

View Article and Find Full Text PDF

The exposure of the plasma membrane calcium pump (PMCA) to the surrounding phospholipids was assessed by measuring the incorporation of the photoactivatable phosphatidylcholine analog [(125)I]TID-PC/16 to the protein. In the presence of Ca(2+) both calmodulin (CaM) and phosphatidic acid (PA) greatly decreased the incorporation of [(125)I]TID-PC/16 to PMCA. Proteolysis of PMCA with V8 protease results in three main fragments: N, which includes transmembrane segments M1 and M2; M, which includes M3 and M4; and C, which includes M5 to M10.

View Article and Find Full Text PDF

The purpose of this work was to obtain information about conformational changes of the plasma membrane Ca(2+)-pump (PMCA) in the membrane region upon interaction with Ca(2+), calmodulin (CaM) and acidic phospholipids. To this end, we have quantified labeling of PMCA with the photoactivatable phosphatidylcholine analog [(125)I]TID-PC/16, measuring the shift of conformation E(2) to the auto-inhibited conformation E(1)I and to the activated E(1)A state, titrating the effect of Ca(2+) under different conditions. Using a similar approach, we also determined the CaM-PMCA dissociation constant.

View Article and Find Full Text PDF

The purpose of this work was to obtain structural information about conformational changes in the membrane region of the sarcoplasmic reticulum (SERCA) and plasma membrane (PMCA) Ca(2+) pumps. We have assessed changes in the overall exposure of these proteins to surrounding lipids by quantifying the extent of protein labeling by a photoactivatable phosphatidylcholine analog 1-palmitoyl-2-[9-[2'-[(125)I]iodo-4'-(trifluoromethyldiazirinyl)-benzyloxycarbonyl]-nonaoyl]-sn-glycero-3-phosphocholine ([(125)I]TID-PC/16) under different conditions. We determined the following.

View Article and Find Full Text PDF

Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca(2+) from the cell. Specific Ca(2+)-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 microg/ml to 1 microg/ml.

View Article and Find Full Text PDF

The aim of this study was to quantify the glucose modulation of the plasma membrane calcium pump (PMCA) function in rat pancreatic islets. Ca2+-ATPase activity and levels of phosphorylated PMCA intermediates both transiently declined to a minimum in response to stimulation by glucose. Strictly dependent on Ca2+ concentration, this inhibitory effect was fully expressed at physiological concentrations of the cation (less than 0.

View Article and Find Full Text PDF

The plasma membrane calcium ATPase (PMCA) reacts with ATP to form acid-stable phosphorylated intermediates (EP) that can be measured using (gamma-32P)ATP. However, the steady-state level of EP at [ATP] higher than 100 microM has not yet been studied due to methodological problems. Using a microscale method and a purified preparation of PMCA from human red blood cells, we measured the steady-state concentration of EP as a function of [ATP] up to 2 mM at different concentrations of Mg2+, both at 4 and 25 degrees C.

View Article and Find Full Text PDF

The functions of membrane proteins are highly dependent on their phospholipid environment. In this article, we have used a hydrophobic photolabeling method to study the noncovalent interactions between plasma membrane calcium pump (PMCA) and surrounding phospholipids. With this approach, we determined (1) the number of lipid molecules in close contact with the transmembrane surface, i.

View Article and Find Full Text PDF

Here we undertook a comparative study of the composition of the lipid annulus of three ATPases pertaining to the P-type family: plasma membrane calcium pump (PMCA), sarcoplasmic reticulum calcium pump (SERCA) and Na,K-ATPase. The photoactivatable phosphatidylcholine analogue [(125)I]TID-PC/16 was incorporated into mixtures of dimyristoyl phosphatidylcholine (DMPC) and each enzyme with the aid of the nonionic detergent C(12)E(10). After photolysis, the extent of the labeling reaction was assessed to determine the lipid:protein stoichiometry: 17 for PMCA, 18 for SERCA, 24 for the Na,K-ATPase (alpha-subunit) and 5.

View Article and Find Full Text PDF

IFABP is a small beta-barrel protein with a short helix-turn-helix motif near the N-terminus that is thought to participate in the regulation of the uptake and delivery of fatty acids. In a previous work, we detected by near UV circular dichroism a reversible conformational transition of this protein occurring between 35 and 50 degrees C in the absence of fatty acids. The addition of the natural ligand oleic acid prevents this phenomenon.

View Article and Find Full Text PDF