Efficient and reliable data routing is critical in Advanced Metering Infrastructure (AMI) within Smart Grids, dictating the overall network performance and resilience. This paper introduces Q-RPL, a novel Q-learning-based Routing Protocol designed to enhance routing decisions in AMI deployments based on wireless mesh technologies. Q-RPL leverages the principles of Reinforcement Learning (RL) to dynamically select optimal next-hop forwarding candidates, adapting to changing network conditions.
View Article and Find Full Text PDFIn order to improve the management mechanisms of the electric energy transport infrastructures, the smart grid networks have associated data networks that are responsible for transporting the necessary information between the different elements of the electricity network and the control center. Besides, they make possible a more efficient use of this type of energy. Part of these data networks is comprised of the Neighborhood Area Networks (NANs), which are responsible for interconnecting the different smart meters and other possible devices present at the consumers' premises with the control center.
View Article and Find Full Text PDF