We demonstrate the application of a recurrent neural network (RNN) to perform multistep and multivariate time-series performance predictions for stirred and static mixers as exemplars of complex multiphase systems. We employ two network architectures in this study, fitted with either long short-term memory and gated recurrent unit cells, which are trained on high-fidelity, three-dimensional, computational fluid dynamics simulations of the mixer performance, in the presence and absence of surfactants, in terms of drop size distributions and interfacial areas as a function of system parameters; these include physicochemical properties, mixer geometry, and operating conditions. Our results demonstrate that while it is possible to train RNNs with a single fully connected layer more efficiently than with an encoder-decoder structure, the latter is shown to be more capable of learning long-term dynamics underlying dispersion metrics.
View Article and Find Full Text PDF